

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

DRFM CORDIC PROCESSOR AND SEA CLUTTER

MODELING FOR ENHANCING STRUCTURED FALSE

TARGET SYNTHESIS

by

Pak Siang Ang

September 2017

Thesis Advisor: Phillip E. Pace

Co-Advisor: Douglas J. Fouts

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection

of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY

(Leave blank)

2. REPORT DATE
September 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE

DRFM CORDIC PROCESSOR AND SEA CLUTTER MODELING FOR

ENHANCING STRUCTURED FALSE TARGET SYNTHESIS

5. FUNDING NUMBERS

6. AUTHOR(S) Pak Siang Ang

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Center for Joint Services Electronic Warfare,

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

NPS, Consortium for Robotics and Unmanned Systems Education and

Research (CRUSER)

10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In this thesis, we investigate two critical components of a digital-image synthesizer electronic warfare

architecture that can be used to infuse false targets into high-range resolution profiling radars. The first

investigation encompasses the design of an in-phase and quadrature (I/Q) converter based on a CORDIC

(Coordinate Rotation Digital Computer) algorithm. Mathematical modeling is used to examine the

accuracy of converting a digitized radar signal I/Q sample into a corresponding five-bit binary phase angle.

Results obtained from MATLAB show that 18 CORDIC iterations are required to achieve accuracy at

5.625o. The resulting design was implemented using the Verilog hardware description language. The

second investigation concerns generating sea clutter to impose on the false target. The mean-power return

of the sea clutter is calculated using the average power of the radar-cross section derived from the Naval

Research Laboratory sea clutter model. The modulation coefficients for the sea clutter were generated

using the fluctuating power returns and Doppler spectra generated using a random KA distribution. The

coefficients for several sea states were generated using MATLAB. Results show that the correct sea clutter

model can effectively add realism to the false target image.

14. SUBJECT TERMS
inverse synthetic aperture radar, sea clutter modeling, CORDIC, Coordinate Rotation Digital

Computer, Digital Image Synthesizer, DRFM, digital radio frequency memory, electronic

attack

15. NUMBER OF

PAGES
137

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION

OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

DRFM CORDIC PROCESSOR AND SEA CLUTTER MODELING FOR

ENHANCING STRUCTURED FALSE TARGET SYNTHESIS

Pak Siang Ang

Military Expert 5, Republic of Singapore Air Force

B.Eng., National University of Singapore, 2005

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2017

Approved by: Phillip E. Pace

Thesis Advisor

Douglas J. Fouts

Co-Advisor

R. Clark Robertson

Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In this thesis, we investigate two critical components of a digital-image

synthesizer electronic warfare architecture that can be used to infuse false targets into

high-range resolution profiling radars. The first investigation encompasses the design of

an in-phase and quadrature (I/Q) converter based on a CORDIC (Coordinate Rotation

Digital Computer) algorithm. Mathematical modeling is used to examine the accuracy of

converting a digitized radar signal I/Q sample into a corresponding five-bit binary phase

angle. Results obtained from MATLAB show that 18 CORDIC iterations are required to

achieve accuracy at 5.625o. The resulting design was implemented using the Verilog

hardware description language. The second investigation concerns generating sea clutter

to impose on the false target. The mean-power return of the sea clutter is calculated using

the average power of the radar-cross section derived from the Naval Research Laboratory

sea clutter model. The modulation coefficients for the sea clutter were generated using

the fluctuating power returns and Doppler spectra generated using a random KA

distribution. The coefficients for several sea states were generated using MATLAB.

Results show that the correct sea clutter model can effectively add realism to the false

target image.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. INVERSE SYNTHETIC APERTURE RADAR1

B. COUNTERING THE ISAR ..2

C. DIGITAL IMAGING SYNTHESIZER (DIS)...2

D. PRINCIPAL CONTRIBUTIONS ..3

1. Phase Converter for the DIS Using the CORDIC

Algorithm ..3

2. Sea Clutter Profile for the DIS ...4

E. THESIS OUTLINE ..4

II. SYNTHETIC IMAGING SENSORS ...5

A. RANGE AND CROSS-RANGE RESOLUTION5

B. SAR CONCEPTS ...6

1. Range and Cross-Range Resolution of SAR6

2. Doppler Processing ..7

3. Spotlight Mode ...8

C. ISAR CONCEPTS ...8

1. Range Resolution ...9

2. Cross-Range Resolution ..9

3. ISAR Range-Doppler Image ...11

D. ISAR IMAGE PROCESSING ..11

1. Range Imaging Model..11

2. Image Compression ...13

E. CHAPTER SUMMARY ..14

III. THE DIS PROCESS ..15

A. OVERVIEW ...15

B. PHASE AND GAIN COEFFICIENTS ..16

1. Generating Realistic Phase and Gain Coefficients17

2. Generating a Target Return for a Test Target18

3. Generating the Phase Coefficients for a Test Target19

4. Generating the Gain Coefficients for a Test Target20

C. PHASE SAMPLES OF INTERCEPTED ISAR SIGNAL21

D. DIS SIGNAL PROCESSING ...21

E. RANGE-DOPPLER IMAGE FOR A TEST TARGET23

F. IDENTIFYING THE DIS TEST TARGET ..25

G. CHAPTER SUMMARY ..27

 viii

IV. THE CORDIC PROCESSOR ..29

A. OVERVIEW ...29

1. Arctangent Function ..29

2. Phase Quantization ..30

B. COORDINATE ROTATION DIGITAL COMPUTER

(CORDIC) ...30

1. CORDIC Theory ..31

2. Vector Rotation Mode ...33

3. Initialization of the Angle Accumulator34

4. Design Methodology for I/Q Phase Converter35

C. FLOATING-POINT MODEL ..35

1. Simulation and Results ..38

2. Error Analysis ..42

D. FIXED-POINT MODEL ...42

1. Word Length ..42

2. Implementation Using MATLAB ...45

3. Simulation and Results ..46

4. Error Analysis ..51

E. IMPLEMENTATION USING VERILOG ..54

1. Overview ...54

2. Simulation and Results ..54

F. CONCLUSION ..56

V. SEA CLUTTER TARGET PROFILE ...59

A. COHERENT SEA CLUTTER SIMULATIONS59

1. Clutter Amplitude Model Using the KA Distribution59

2. Modeling of Fluctuating Sea Clutter Spectra66

3. Generating Random Sea Clutter Power and Doppler

Spectrum ...66

B. PHASE AND GAIN COEFFICIENTS FOR THE SEA

CLUTTER ..67

1. Generating the Phase Coefficient with Sea Clutter71

2. Generating the Gain Coefficient with Sea Clutter71

3. Simulation and Results ..71

C. CHAPTER SUMMARY ..77

VI. CONCLUSIONS AND RECOMMENDATIONS ...79

 ix

APPENDIX A. MATLAB CODES ..81

A. CORDIC IMPLEMENTATION USING FLOATING POINT

NUMBERS..81

B. CORDIC IMPLEMENTATION USING FIXED-POINT

IMPLEMENTATION ...83

C. FINDING THE MAXIMUM PHASE ERROR87

D. SEA CLUTTER SIMULATION ..91

E. NORMALIZED RCS...100

APPENDIX B. VERILOG CODES...105

A. CORDIC PROCESSOR ..105

B. TESTBENCH FILE ...109

LIST OF REFERENCES ..113

INITIAL DISTRIBUTION LIST ...115

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. a) Photo of the U.S.S. Crockett, b) ISAR Image of the U.S.S.

Crockett. Source: [1]. ...1

Figure 2. Doppler Histories of Evenly Spaced Points on the Ground. Source:

[11]. ..7

Figure 3. LFM Chirp Pulse. Source: [4]. ...9

Figure 4. Resolving Cross-Range Resolution Based on Target Rotation10

Figure 5. Geometry for One-Dimensional Range Imaging12

Figure 6. ISAR Compression Process. Source [1]. ...13

Figure 7. Simplified Block Diagram of the DRFM Integrated with the I/Q

Phase Converter and DIS. Adapted from [9]. ..15

Figure 8. Scatterer Distribution of a Ship Test Target. Source: [5].17

Figure 9. Generating Realistic Phase and Gain Coefficients18

Figure 10. Range-Doppler Profile for a Test Target Template. Adapted from

[4]. ..18

Figure 11. DIS Block Diagram. Adapted from [1]..22

Figure 12. Simulated Range-Doppler Image of 32-Range Bin Test Target25

Figure 13. Gaps Developing on False Target as Number of Integrated Pulses

Increases ...26

Figure 14. Angular Measurement for a Complex Number ...29

Figure 15. A Vector Being Rotated Counter-Clockwise by Angle  32

Figure 16. Flow Chart for CORDIC Vectoring Mode ..36

Figure 17. Vectoring Mode CORDIC Iterations ...39

Figure 18. Cumulative Angle through Iterations...39

Figure 19. Surf Plot for Arctangent(Q/I) Using Floating-Point Precision

Calculation ...41

 xii

Figure 20. Surf Plot for Arctangent(Q/I) Solved Using Eight-Iteration CORDIC41

Figure 21. I/O Bit Formats for CORDIC Phase Converter ...43

Figure 22. CORDIC Iterations Using Fixed-Point Numbers47

Figure 23. Cumulative Angle through Iterations Calculated Using Fixed-Point

Numbers ...47

Figure 24. Surf Plot for Arctangent(Q/I) Solved by Eight-Iteration CORDIC

Using Floating-Point Precision Calculation...50

Figure 25. Criteria for Rounding Up or Down ..51

Figure 26. Absolute Angular Error for an Eight-Iteration CORDIC Processer52

Figure 27. Close-Up View of Figure 25 ..52

Figure 28. Angular Error for 8-Iteration, 16-Iteration, and 18-Iteration CORDIC

Processors ..53

Figure 29. Comparison of xi, yi, and zi Calculations by MATLAB and Verilog55

Figure 30. ModelSim Simulation Using I=-45, Q=23 with Phase Result (Zout)

Showing 5’b01110 ...57

Figure 31. ModelSim Simulation Using I=0, Q=0 with Phase Result (Zout)

Showing 5’b00000 ...57

Figure 32. ModelSim Simulation Showing Pipelined Output58

Figure 33. Clutter Geometry for Airborne ISAR. Adapted from [18].60

Figure 34. Grazing Angle versus Range ...63

Figure 35. Normalized RCS versus Range ..63

Figure 36. RCS versus Range..64

Figure 37. Normalized RCS for Sea Clutter at Different Grazing Angles and SS......64

Figure 38. Received Power from Sea Clutter at Different SS65

Figure 39. Mean Power and Fluctuating Power of Sea Clutter67

Figure 40. Power Spectral Density of Sea Clutter at SS=2 ...68

Figure 41. Power Density Spectrum of Sea Clutter ..69

 xiii

Figure 42. Power Density Spectrum of Sea Clutter in Range Bins Where Target

Resides ...69

Figure 43. Power Spectrum for Range Bins 7, 13, 22, 32 ...70

Figure 44. Range-Doppler Test Image of False Target and Sea Clutter73

Figure 45. Range-Doppler Test Image of Sea Clutter ...73

Figure 46. Range-Doppler Test Images at Different Sea States74

Figure 47. Sea Clutter (1.5625  clutterf Hz) Showing Discontinuity When

0.78125 f Hz ..74

Figure 48. Sea Clutter (0.78125  clutterf Hz) Showing Continuity When

0.78125 f Hz ..75

Figure 49. Range-Doppler Test Images for Sea Clutter Formed Using Different

Numbers of Samples ..76

Figure 50. Test Image Showing the Use of Sea Clutters to Cover the Banding

Gaps of the False Target ..77

Figure 51. White Gaussian Noise Added to Figure 50..77

Figure 52. Use of the Amplitude Output of the Phase Converter to Reconstruct

the ISAR Waveform ..80

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Gain Modulation Quantization Scheme. Source: [4].20

Table 2. Key Parameters Used in the Simulation of the DIS24

Table 3. Representation of Phase Angles Using Five-Bit Resolution31

Table 4. Values of xo, yo, and zo for Different Quadrants ...35

Table 5. Rotation angles for an Eight-Iteration CORDIC Processor37

Table 6. CORDIC Calculation for Each Iteration ..40

Table 7. Magnitude of xi and Scale Factor in Each Iteration40

Table 8. Maximum Angular Error with Every Incremental Iteration43

Table 9. Quantization Scheme for DIS versus CORDIC ...44

Table 10. CORDIC Calculation for Z = -45 + 23j Using Fixed-Point Numbers46

Table 11. Binary Representation of zi for Z = -45 + 23j ..48

Table 12. Steps to Represent CORDIC Result for Z = -45 + 23j Using Five

Bits ...48

Table 13. Binary Representation of zi for Z = -45 - 23j ..48

Table 14. Steps to Represent CORDIC Result for Z = -45 - 23j Using Five Bits49

Table 15. CORDIC Calculation for Z = -230 + 1j Using Fixed-Point Numbers50

Table 16. Maximum Phase Error for CORDIC Processors with Different

Iterations (5 to 18) ..53

Table 17. Summary of Sea State. Source: [17]. ...61

Table 18. Summary of NRL Model Free Parameters. Source: [17].62

Table 19. Radar Parameters and Operating Environment..68

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

ADC analog-to-digital converter

CORDIC Coordinate Rotation Digital Computer

DIS Digital Imaging Synthesizer

DRFM Digital RF Memory

EM electromagnetic

ISAR inverse synthetic aperture radar

LOS line-of-sight

LUT look-up table

MSB most significant bit

NPS Naval Postgraduate School

NRL Naval Research Laboratory

PRI pulse-repetition interval

RCS radar-cross section

RF radio frequency

SAR synthetic aperture radar

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Professor Phillip E. Pace, for his guidance

over the past year. His patience and eagerness in imparting his wealth of knowledge to

everyone is indeed inspiring. I would also like to thank my co-advisor, Professor Douglas

J. Fouts, for all his valuable advice. Together, they have made this thesis a truly

unforgettable journey. I would also like to express my gratitude to Professor David C.

Jenn and Doctor Sebastian Teich, as I have also benefited from their expertise during the

course of writing this thesis. The support for this research was made possible by the NPS

CRUSER. Many thanks go to Dr. Raymond Buettner. Last, but not least, I would like to

thank the Singapore Armed Forces, as well as my former commander, ME6 (NS) Jeffrey

Sim, for giving me this opportunity to pursue my postgraduate studies.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. INVERSE SYNTHETIC APERTURE RADAR

An inverse synthetic aperture radar (ISAR) is an imaging sensor that creates a

high-resolution, two-dimensional image of a moving object. An ISAR transmits

electromagnetic (EM) radio frequency (RF) waveforms in the direction of the moving

object and receives the waveforms that are reflected back. When there is relative motion

between the ISAR and the moving object, also referred to as a target, the frequency of the

received RF waveform is different from that of the transmitted RF waveform. This

change in frequency, also known as a Doppler shift, is a pulse-to-pulse phase rotation and

varies according to the range rate of the target. By processing the Doppler returns, we can

use an ISAR to create images in the range and cross-range domain [1]. An image of the

U.S.S. Crockett and an ISAR image of the ship are shown in Figure 1. By observing the

two images, we can identify the masts and superstructure of the ship within the

ISAR image.

Figure 1. a) Photo of the U.S.S. Crockett, b) ISAR Image of the U.S.S. Crockett.

Source: [1].

ISAR technology is employed in civilian applications, such as search and rescue

operations and space research. In the military, ISAR such as the AN/APS-137B(V) radar

is used to conduct maritime surveillance operations to identify, recognize, and classify

surface and airborne targets. With the ISAR being able to provide high-quality data such

as range, bearing, and position, a vessel patrolling in disputed waters can easily be

 2

detected and identified by an adversary. As ISAR technology matures and ownership

becomes more accessible to all, the need for measures to counter ISAR in the electronic

warfare (EW) spectrum will increase.

B. COUNTERING THE ISAR

The main techniques of electronic jamming that can be used to disrupt detection

by an ISAR are presented in [2]. The first technique uses a noise signal to mask the

backscatter return of the target. Although noise jamming can be achieved using low

power, its effectiveness is reduced if the jammer has to spread the power over multiple

frequencies at the same time. Increasing the power or using additional jammers can

address this constraint on power, but the stronger emission increases the target RF

signature and can also disrupt its own communication system. The second technique is

deceptive jamming where the target replicates a backscatter return waveform that causes

the adversary radar to detect a different target. The intent is to mislead the adversary into

mistaking the target for a non-hostile vessel in hopes to disrupt an offensive action

against it. The advantage of this technique is a lower emission signature that promises

higher EM stealth. The disadvantage is the complexity associated with this technique as

the jammer must be able to modulate the pulses of the ISAR waveform with the

appropriate time delay, phase rotation, Doppler shift, and amplitude such that the false

target looks convincing to the adversary [3].

C. DIGITAL IMAGING SYNTHESIZER (DIS)

The DIS was invented by a team of staff and students from the Naval

Postgraduate School (NPS) in 2001 to generate image decoys against an ISAR [4], [5],

[6]. The DIS is capable of modulating the phase and amplitude of the ISAR waveforms to

resemble the desired motion profile and the radar-cross section (RCS) characteristics of

the intended false target that appear on the ISAR image. The ISAR waveforms are

provided to the DIS from a high-speed digital RF memory (DRFM) [7], which captures

and stores the intercepted waveforms. A phase converter is used to extract the phase

samples from the digital signals. The phase samples are provided to a finite impulse

response arrangement of pipelined range bin Doppler processors with finite resolution. A

 3

prototype version of the DIS was implemented on an Application Specific Integrated

Circuit (ASIC), and functional testing was completed in 2007 [8]. In 2015, the NPS

Center for Joint Services Electronic Warfare began work to improve the DIS using Field

Programmable Gate Arrays.

As the DIS can provide electronic protection (EP) for surface vessels, it is

regarded as a threat to ISAR. This view has inspired several ideas for electronic attack

against the DIS, and they are summarized in [9]. One of the proposed electronic attack

techniques [10] exploits the presence of banding gaps that the false target creates on the

ISAR image, which become more significant as the Doppler resolution of the ISAR

increases. In addition, the false target lacks the proper backscatter returns such as the

ones from the surface of the sea (sea clutter), which must also appear on the ISAR image.

In summary, the characteristics of the false target created by the DIS are limited due to

the finite resolution of the range-bin Doppler processors and the lack of a proper sea

clutter profile.

D. PRINCIPAL CONTRIBUTIONS

The principal contributions of this research are centered around the development

of an efficient DIS phase converter and the creation of a realistic sea clutter profile. The

major investigations completed are given below.

1. Phase Converter for the DIS Using the CORDIC Algorithm

A phase converter was designed to generate phase samples for the DIS using the

Coordinate Rotation Digital Computer (CORDIC) algorithm. The phase converter

receives samples of the ISAR waveforms from a DRFM in complex form comprised of

an in-phase (I) component and a quadrature (Q) component. The phase converter

calculates the phase of this complex signal as a five-bit binary number. A model of the

phase converter was built using MATLAB to study the key parameters, such as the

number of iterations of the CORDIC process and the number of fraction bits required for

accurate results. The study concluded that the phase converter requires 18 iterations of

the CORDIC algorithm to compute accurate phase samples quantized at five bits. After

 4

the parameters were calculated, the phase converter is described using the Verilog

hardware description language and the latter tested to work using the ModelSim software.

2. Sea Clutter Profile for the DIS

An existing sea clutter simulation model was modified to generate the proper sea

clutter in various sea states and wind directions for a high-resolution airborne radar. The

model makes use of an empirical model developed by the Naval Research Laboratory

(NRL) to calculate the normalized RCS of the sea clutter. Using the fluctuating power

and Doppler generated by two random statistical models, we created a power density

spectrum of the sea clutter. A portion of the power spectral density was then extracted to

create the sea clutter to collocate beside the false target on the ISAR image.

E. THESIS OUTLINE

In Chapter II, the reader can find a discussion of the fundamental ISAR concepts

and signal processing. The purpose of this chapter is to provide a background for

understanding ISAR reception and image generation. This background also helps the

reader to appreciate Chapter III, which features the DIS architecture and its process. The

design of the phase convertor that uses the CORDIC algorithm is discussed in Chapter

IV, while the modeling and simulation of the sea clutter is discussed in Chapter V. In this

chapter how the sea clutter at various sea states appears on the range-Doppler image is

discussed. The thesis is concluded in Chapter VI, in which recommendations for future

research on the DIS are also mentioned.

 5

II. SYNTHETIC IMAGING SENSORS

An imaging radar such a synthetic aperture radar (SAR) or ISAR is able to

generate images in high resolution. The resolution of a radar is its ability to resolve

multiple targets located close to one another, and it is determined by parameters of the

radar, such as frequency, coherent processing interval, and the dimensions of the antenna.

In the case of the ISAR, the rate of rotational motion of the target about its axis can affect

the resolution in the cross-range dimension. The purpose of this chapter is to provide

readers a summary of how an imaging radar functions and how image processing is

carried out in an ISAR so as to allow the reader to appreciate the DIS process, which is

featured in the subsequent chapter.

A. RANGE AND CROSS-RANGE RESOLUTION

The range and cross-range resolutions describe the ability of a radar to resolve

targets that are very close to one another. The range and cross-range resolution distances

are the minimum separations between two targets in order to be differentiated by the

radar. In general, it is harder to achieve high cross-range resolution than it is to achieve

high-range resolution. For a non-imaging radar, the range resolution distance is defined

as

2

r

c
d


 (2.1)

where rd is the range resolution distance, c is the speed of light, and  is the

transmission pulse width. A shorter pulse width reduces the range resolution distance and

increases the resolution. As transmitting a short pulse width to achieve high-range

resolution requires a high level of power, which presents a separate set of problems,

pulse-compression techniques such as pulse coding or frequency modulation are used to

provide the sufficiently large bandwidth that corresponds to a short pulse while keeping

the power at a manageable level [4].

The cross-range resolution distance is defined as

 6

cr

R
d

D


 (2.2)

where crd is the cross-range resolution distance, R is the target range,  is the

wavelength, and D is the physical dimension of the antenna. From (2.2), a higher cross-

range resolution or a smaller cross-range resolution distance can be achieved by

decreasing the RF wavelength or increasing the dimension of the antenna. Real-life

constraints such as space limitations and the relatively higher atmospheric attenuation of

higher-frequency RF waves, however, prevent radar designers from doing so.

B. SAR CONCEPTS

1. Range and Cross-Range Resolution of SAR

SAR, despite not having a large antenna, is able to achieve high cross-range

resolution because it is able to emulate a large antenna during operation. This is achieved

by making use of the forward motion of the aircraft that has the SAR as its payload [11].

“Each time a pulse is transmitted, the radar occupies a position a little farther along on

the flight path. By pointing a reasonably small antenna out to one side and summing the

returns from successive pulses, it is possible to synthesize a very long side looking linear

array” [12]. The cross-range resolution distance for a SAR is defined as

2

crSAR

R
d

L


 (2.3)

where crSARd is the SAR cross-range distance and L is the flight path length, which is

also the length of the synthetic linear array. As [11] has shown, the summing of enough

returns such that

 L R
D


 (2.4)

and substituting of (2.4) into (2.3) results in the maximum cross-range resolution as

2

2




 

 
 
 

crSAR

R D
d

R
D

. (2.5)

 7

From (2.5), we observe that reducing the dimension of the antenna also reduces the cross-

range resolution distance. Yet, there is also a limit to how this should be handled since

reducing the size of the antenna also reduces its gain factor, which affects detection

range.

2. Doppler Processing

When the aircraft carrying the SAR is in motion, there will be Doppler effect

present in the backscatter return, causing a difference in frequency of the transmitted

waveforms and the received waveforms. Doppler is determined by the radial velocity and

is approximated as

 r
d

v
f




 (2.6)

where df is the Doppler shift and rv is the radial component of the aircraft velocity

along the range dimension. For two targets spaced apart by a distance, their Doppler

returns are different at a given time instant. The SAR translates the difference in Doppler

frequencies into cross-range separation [11]. A Doppler history of the returns from

several evenly spaced points on the ground offset from the radar flight path taken is

shown in Figure 2. At any given time, the Doppler from each point has a slight

difference, which corresponds to their azimuth separation. A motion compensation

technique is used to correct phase error introduced when the aircraft is not flying at a

constant velocity.

Figure 2. Doppler Histories of Evenly Spaced Points on the Ground.

Source: [11].

 8

3. Spotlight Mode

SAR operates in several modes. These modes are strip-map, squint, and spotlight.

Each mode produces an image with different levels of cross-range resolution and are

employed for different missions. Spotlight mode offers greater cross-range resolution

than the other two modes and is usually employed when there is a region of high interest

that requires continuous mapping. When in this mode, the SAR antenna is steered to

focus on the region as the aircraft moves around it. Stimson [11] mentioned three

improvements using this mode. First, L is no longer bounded by the beamwidth of the

physical antenna, which is approximately / D . Second, a larger antenna can be used

without having to reduce L, thereby bringing about a higher main lobe gain, which

improves the signal-to-noise ratio. Finally, viewing the target from different aspect angles

allows the SAR to capture returns from other scatterers of the target, which is not

achievable from just one aspect angle. The spotlight mode is highlighted in the thesis

because it shares the same principle as the ISAR.

C. ISAR CONCEPTS

SAR is suitable for imaging objects when they are stationary. Used on objects that

have motions about their own axes, SAR produces images that become blurred. ISAR,

which is stationary, makes use of the Doppler shift generated by the object’s velocity in

the line-of-sight (LOS) direction to the ISAR to resolve the object in the cross-range

dimension. A pulse compression technique is used to generate a pulse that has a short

width  and a wide modulation bandwidth  with 1/   . A commonly used waveform

is the linear frequency modulated (LFM) waveform, which is also known as a chirp

waveform. An LFM ISAR pulse can be expressed as

 22 2

()
  

  
 

cj f t Tt
r t rect e

T
 (2.7)

where T is the uncompressed pulse width in s,  is the modulation bandwidth of the

LFM waveform in Hz, and cf is the transmitted carrier frequency in Hz. The pulse

 9

envelope of a rectangular function  /rect t T , the instantaneous modulating frequency,

and the resulting LFM pulses are depicted in Figure 3.

Figure 3. LFM Chirp Pulse. Source: [4].

1. Range Resolution

The range resolution for an ISAR using an LFM waveform is

2

rISAR

c
d 


 . (2.8)

With pulse compression, the improvement in range resolution is a factor of /T  .

2. Cross-Range Resolution

The cross-range resolution of an ISAR is illustrated in Figure 4. A ship is rolling

on its axis perpendicular to the LOS from the ISAR at an angular rate of ω. Point M,

 10

which is at the top of the ship mast, is at a distance h away from the axis, giving a

tangential velocity of ωh. The instantaneous Doppler frequency shift at that point is

2 2v h

f


 
  . (2.9)

Rearranging gives

2

h f



 . (2.10)

Figure 4. Resolving Cross-Range Resolution Based on Target Rotation

By replacing h with the incremental cross-range distance, which is the cross-range

resolution distance of the ISAR crISARd , we re-express (2.9) as

2

crISARd f



  (2.11)

where f is the Doppler resolution of the ISAR. This can also be expressed as

1

I

f
T

  (2.12)

where IT is the coherent integration time. Substituting (2.9) into (2.8), we can express

crISARd as

 11

1

2 2
crISAR

I

d
T

 

 

  
   
  

 (2.13)

where T  is the angular displacement. From (2.11) and (2.12), we see that crISARd

can be further reduced by increasing the angular velocity, or integration time.

3. ISAR Range-Doppler Image

The ISAR displays a range-Doppler image, which is a consolidation of all the

backscatter returns from the target as it rotates on its own axis in a given time period. The

range reveals the distance from the ISAR to the target along the ISAR LOS. The Doppler

of the target on a plane perpendicular to the ISAR LOS tells the cross-range information.

With the ship in Figure 4 as an example, the position coordinates of the mast in the range-

Doppler image comprise its position in the range dimension and its Doppler value in the

Doppler dimension. When the ship is rolling in the direction of the ISAR LOS, the

Doppler shifts created by all the reflective surfaces of the ship are positive. Being the

highest located structure on the ship, the mast has the greatest radial velocity and creates

the largest positive Doppler shift. When rolling away from the ISAR, the ship appears

upside down and the mast has the most negative Doppler value. Such proportionality

allows the range-Doppler image to be used interchangeably as a two-dimensional image.

D. ISAR IMAGE PROCESSING

Having introduced the ISAR range-Doppler image and the information that it

represents, in this section we discuss the generation of such an image.

1. Range Imaging Model

Consider the scatterers model shown in Figure 5. The range-profile function

represents the reflectivity of the target at each resolvable range. For a one-dimensional

target with Nr scatterers, the range-profile function can be represented as [4]

 () ()
rN

r m m

m

C x x x   (2.14)

 12

where m is the RCS of the mth scatterer located at range xm. Let a received ISAR

baseband signal from the target scatterer be

 2

()
  

  
 

j t Tt
s t rect e

T
. (2.15)

The received signal can be represented as

1

() (2)


 
rN

s m s m

m

I mT s mT x c (2.16)

where Ts is the analog-to-digital converter (ADC) sampling period and 2 /mx c is the

round-trip time delay. The received signal from (2.15) can also be expressed as the

convolution between the range profile function and the transmitted signal

 () () () () ()
2

   s
s r s r s

cmT
I mT C x s mT C s mT (2.17)

where “ ” implies convolution. Rearranging the terms in (2.17) and applying Fourier

transforms, we get the range profile function, which can be expressed as

 
 

 
     

       
     

1 1
() ()

2 ()()

ss
r

s

I mTcmT I k
C

S ks mT
 (2.18)

where k is the frequency index, and 1 represent the Fourier transform and inverse

Fourier transform, respectively.

Figure 5. Geometry for One-Dimensional Range Imaging

 13

2. Image Compression

The image compression process is shown in Figure 6. Here n is the pulse index

and m is the sample index of each individual, and I(m,n) is the mth sample of the nth

pulses received by the ISAR, S(m,n) is the mth sample of the nth pulse transmitted, and

Cr(m,n) is the range profile of the target based on the mth sample of the nth pulse.

Figure 6. ISAR Compression Process. Source [1].

The inverse Fourier transform in (2.18) assumes S(k) is nonzero at all frequencies.

In practice, range imaging is based on matched filter theory, and the range profile

function is obtained from the cross-correlation of the received signal with the transmitted

signal [4]. The new expression for the range profile function is, therefore,

 (,) (,) (,)rC m n I m n S m n  (2.19)

where “ ” implies cross correlation. Putting the cross correlation of I(m,n) and S(m,n)

through an inverse Fourier transform results in the product of the Fourier transform of

I(m,n) and the complex conjugate of the Fourier transform of S(m,n)

    (,) (,) (,) (,) (,)
r
C m n I m n S m n I k n S k n   , (2.20)

where “  ” implies complex conjugate and

   
 

*
*(,) (,)S k n S m n (2.21)

 14

and

  (,) (,)I k n I m n . (2.22)

The range profile function can then be obtained by taking the inverse Fourier transform

of (2.18), which is

  1 *(,) (,) (,)
r
C m n I k n S k n . (2.23)

Equation (2.23) can be displayed as a matrix in which each row is the range profile

function of a distinct pulse, and each column holds the component of the range profile

grouped into the same range bin. This matrix can be expressed as

1

2

1

(,)

(,)

(,)

(,)

(,)

p

p

rN p

rN p

r

r

r

C m n for pulse N

C m n for pulse N

C m n

C m n for pulse

C m n for pulse



    
 

    
 

  
   
 

   
 

. (2.24)

Every range profile function represents the reflectivity of the target in the time

domain. Performing a Fourier transform on the range profile matrix and taking the

absolute values yields the Doppler components at each range bin for all the Np pulses.

Aligning the range Doppler for all the pulses then yields the final ISAR image. The ISAR

image can be expressed as [1]







  
1

0

1
(,) { (,)} (,)

p

s

N
jwT kn

r r r
np

C m k FFT C m n C m n e
N

. (2.25)

E. CHAPTER SUMMARY

The concept of SAR and ISAR were explained in this chapter. The processes of

range modeling and range compression leading to the generation of the range-Doppler

profile were also discussed. An overview of the DIS process is presented in the next

chapter.

 15

III. THE DIS PROCESS

The processing of a backscatter signal to form a range-Doppler image within an

ISAR was discussed in the previous chapter. In this chapter, the discussion focuses on the

DIS and its capability to synthesize a false target in the ISAR image. That is, the DIS

modulates the ISAR return waveforms to include imitations of radar return signals such

that a false target appears in the ISAR compression.

A. OVERVIEW

At the system level, the DIS is integrated into a DRFM [9]. The block diagram of

a DRFM is shown in Figure 7. A DRFM is able to intercept and store RF waveforms as

well as retransmit them subsequently. Upon capturing an ISAR waveform, the DRFM

uses a local oscillator to down convert the signal to an intermediate frequency. The

intermediate frequency signals are separated into in-phase and quadrature components

and are digitized by the ADCs into digital samples that are stored in a high-speed

memory. An I/Q phase converter extracts phase information from the digitized

waveforms to generate phase samples for the DIS to process. After modulation by the

DIS is complete, the DRFM converts the processed signal back into an analog form.

Finally, the DRFM transmits the analog signal back to the ISAR.

Figure 7. Simplified Block Diagram of the DRFM Integrated with the I/Q Phase

Converter and DIS. Adapted from [9].

 16

The range resolution distance of a typical modern ISAR is approximately 1 m.

The range resolution of the DIS has to be larger than that of the ISAR in order to have the

generated false target look genuine [1]. A target profile of a large structure, such as a

ship, spans many range bins. A simplified example used as a test pattern is shown in

Figure 8, where the scatterers of a ship target are distributed over 32 range bins. The DIS

consists of multiple range bin modulators in parallel with each range bin modulator

responsible for modifying one range bin of the target. Unlike the ISAR where the range

resolution distance is determined by the bandwidth of the compressed LFM pulse, the

range resolution of the DIS depends on the DRFM sampling period or delay between

each range bin modulator. Having more range bin modulators gives the DIS the options

to synthesize extended targets in range-Doppler space.

The test target in Figure 8 was used to verify that the complex range bin

processors were functioning properly. In addition, the test pattern was used to confirm the

compression signal processing of the ISAR. The test pattern can be compared to the

output range-Doppler configuration to identify problems with the image generation

architecture. Most importantly, the test pattern process leads to engineering concepts that

must be addressed in the deployed version of the DRFM where realistic targets are

synthesized. Engineering details such as clutter modeling and addition of the clutter

coefficients to the target coefficients can be studied. The development of realistic target

models can also be examined.

B. PHASE AND GAIN COEFFICIENTS

The modulated backscatter returns must have the appropriate amplitudes and

phases in order to generate a false target that looks convincing to the ISAR operator.

These returns are supposed to resemble the reflected RF waveforms from each scatterer

on the target, such as the ones shown in Figure 8. The amplitude and phase of the return

signal are determined by the RCS and Doppler frequency of each scatterer, respectively.

The false target modulation is represented by a gain coefficient and a phase coefficient.

To generate a specific test target profile, the DIS needs to be programmed with a set of

gain coefficients and phase coefficients.

 17

Figure 8. Scatterer Distribution of a Ship Test Target. Source: [5].

1. Generating Realistic Phase and Gain Coefficients

The process for generating phase and gain coefficients to generate a realistic

target image is shown in Figure 9. Here, an ISAR is shown illuminating complex

scatterers consisting of a ship rocking back and forth in the sea. This complex scattering

scene cannot be created synthetically; it can only be generated using the scattered EM

field from the ISAR sensor as shown. The scattered waveform is collected by the

reference receiver that digitized the scattered field using a high sampling rate. The I and

Q components are digitized and used to calculate the gain and phase increment

coefficients. It is difficult and expensive to collect the scattered waveforms

experimentally. Consequently, detailed models of the ISAR, ship test target, and sea

clutter can be used to collect the scattered returns instead. For the purpose of illustrating

the bit-level simulation of the DIS, the generation of the coefficients was based on the

ship target as a test pattern for the rest of this chapter.

 18

Figure 9. Generating Realistic Phase and Gain Coefficients

2. Generating a Target Return for a Test Target

The phase coefficients were derived using the range-Doppler profile of the test

target. An example of a range-Doppler profile of a ship target as a test pattern is shown in

Figure 10. Here, r is the index of the range cell in the horizontal axis, and d is the index

of the Doppler cell in the vertical axis [5]. The number that appears in a cell with

coordinate (r,d) indicates the Doppler of the scatterer in that location. The information

about the RCS of the scatterer is not displayed in this range-Doppler profile.

Figure 10. Range-Doppler Profile for a Test Target Template. Adapted from [4].

 19

The ISAR integrates multiple pulses to form an image. Since the target velocity

component in the radar LOS and the target position vary with each pulse, the amplitude

and phase also vary for different pulses. As such, the target return in the complex form

can be represented as a function of the transmitted pulse index and coordinate location on

the range-Doppler profile map

2 (,)(, ,) (,) j f r d nPRIT r d n A r d e  . (3.1)

The target return can be consolidated at each range bin for each pulse. This is achieved

by adding up the returns from all the scatterers in the Doppler cells with the same range

cell index and can be expressed as [5]

1

(,) (, ,)
dN

d

T r n T r d n


  , (3.2)

where Nd is the total number of Doppler cells. Equation (3.2) was used to generate the

phase coefficient and gain coefficients.

3. Generating the Phase Coefficients for a Test Target

The phase angles of the target returns at each range bin r for each pulse n were

calculated to derive the phase coefficients. The phase angle of a target return was

computed using its real and imaginary components and is expressed as [5]

 

 

(,)
(,)

(,)
T

imag T r n
r n

real T r n


 
    

. (3.3)

The use of the phase angle is explained in [1]. “To create the proper Doppler

frequency, the image synthesizer rotates the DFRM phase samples (,)m n on a pulse-to-

pulse basis. Therefore, instead of the extracted phase value being applied directly, a phase

increment is required” [1]. The phase increment for range bin r and pulse n can be

expressed as

 (,) (, 1) (, 1) (,)inc inc T Tr n r n r n r n         . (3.4)

The phase coefficient is generated when the phase increment is quantized at kp-

bits, which is

' (,)2
(,)

2

pk

inc
inc

r n
r n






 
  
 

 (3.5)

 20

where    is the floor integer rounding function.

4. Generating the Gain Coefficients for a Test Target

From [4], the amplitude modulation involves taking the product of the intercepted

signal and “a gain value equal to the magnitude of the sum of the complex scatterers at

the same range bin/pulse combination.” To obtain the gain values, the magnitude in (3.2)

is normalized so that it varies between 0 and 1

(,)

(,)
max (,)

N

T r n
T r n

T r n


 


. (3.6)

The gain values are applied by performing bit-shifting on the I and Q components of

(,)T r n . The extent of the shifting is determined by a control code kg, which is assigned

based on the ranges of magnitude for (,)T r n [5]. As an illustration, the gain modulation

quantization scheme that uses four bits for kg is shown in Table 1. The gain coefficient

(,)g r n represents the value of the shift in the binary signal with the effective gain, as

shown in Table 1.

Table 1. Gain Modulation Quantization Scheme. Source: [4].

Normalized Magnitude Gain Coefficient (,)g r n Effective Gain (,)2g r n

0.8–1.0 10 1024

0.4–0.8 9 512

0.2–0.4 8 256

0.1–0.2 7 126

0.05–0.1 6 64

0.025–0.05 5 32

0.0125–0.025 4 16

0.00625–0.0125 3 8

0.0032–0.00625 2 4

0.0016–0.00625 1 2

0–0.0016 0 1

 21

C. PHASE SAMPLES OF INTERCEPTED ISAR SIGNAL

The DRFM down converts the ISAR received LFM waveforms. Recall the

complex envelope of the signal after down conversion is

2(/)() j t Tt

s t rect e
T

  
  

 
. (3.7)

Samples of the radar signal are taken by the DRFM at regular intervals. The DRFM

sample times are defined as

s

m
t nPRI

f
  (3.8)

where fs is the ADC sampling frequency and PRI is the ISAR pulse repetition interval in s

[5]. After substituting the time t in (3.7) with the expression of t in (3.8), we express the

complex envelope amplitude sample for the I and Q components as

  (,) (,)realS m n real S m n (3.9)

and

  (,) (,)imagS m n imag S m n . (3.10)

The I/Q phase converter calculates the phase angles of the I and Q sample signal and

generates them as kp-bits phase samples. The phase angles can be expressed as

(,)

(,)
(,)

imag

o

real

S m n
m n

S m n


 
  

 
, (3.11)

and the phase samples can be expressed as

(,)2

(,)
2






 
  
 

pk

o m n
m n . (3.12)

The I/Q phase converter is implemented using the CORDIC algorithm and is discussed in

greater detail in Chapter IV.

D. DIS SIGNAL PROCESSING

In this section, we describe the signal processing that takes place within the DIS.

The block diagram of the DIS is shown in Figure 11. The most significant components of

the DIS are the range bin modulators. Each range bin modulator consists of a phase

 22

adder, a look-up table (LUT), a gain block, and a summation adder. At the adder of a

specific range bin modulator, a phase sample from the I/Q phase converter is added with

a phase coefficient that is designated for that specific range bin modulator and for that

specific pulse. The phase increment in a range bin changes with the pulse-repetition

interval (PRI). The modulated kp-bits phase output can be expressed as

 ˆ(, ,) (,) (,)incr m n m n r n    . (3.13)

Figure 11. DIS Block Diagram. Adapted from [1].

The modulated phase output is used to construct a complex signal with a unit

amplitude that can be expressed as

 ˆ ˆ(, ,) cos((, ,)) sin((, ,))L r m n r m n j r m n   . (3.14)

The cosine and sine of the modulated phase are computed using an LUT that contains the

results of the cosine and sine operation on all 2 pk
possible phase outputs. With that, the

normalized I and Q amplitude components are established and applied to the gain block

via their own channel [5].

 23

The amplitude modulation takes place at the gain block where the I and Q

components are multiplied with the gain coefficients. The outcome of this amplitude

modulation is a complex signal that can be expressed as

ˆ((,) (,))(,) (,)(, ,) 2 (, ,) 2 incj m n r ng r n g r nS r m n L r m n e

 
  . (3.15)

The final adder is the last stage in each range bin modulator. The complex signal

in (3.15) is sent to the final adder and added with the output of its adjacent final adder

from another range bin modulator. For example, the output of the final adder from range

bin modulator #1 is the summation of the outcome of the amplitude modulation in range

bin modulator #1 and the output of the final adder from range bin modulator #2. The

output of the final adder from range bin modulator #2 is the summation of the amplitude

modulation created in range bin modulator #2 and the output of the final adder from

range bin modulator #3, and so on. The complex output pulse from the DIS is taken from

the final adder in range bin modulator #1. A delay of one clock cycle is introduced by

each adder. In other words, “each output pulse is the superposition of Nr copies of the

pulse, each delayed with respect to another by the adder delay, scaled differently by the

gains 2g(r,n) and phase rotated by (,)inc r n ” [1]. The final DIS output expression is

given by

1 1

((,) (,))(,)

0 0

(,) (, ,) 2
r r

inc

N N
j m r n r ng r n

r r

I m n S r m n e
 

 
 

 

   . (3.16)

The output from the DIS is returned to the DRFM, which converts the output signal into

analog form. After that, the analog signal modulates the carrier frequency of the ISAR

prior to transmission back to the ISAR. Upon reception of the modulated signal, the

ISAR processes the signal using the imaging process described previously in Chapter II.

E. RANGE-DOPPLER IMAGE FOR A TEST TARGET

In this section, we presents the range-Doppler image for a false target that is

generated by the DIS using the test target shown in Figure 8. The DIS was previously

been implemented in MATLAB. The bit-level simulation algorithm of the software

model is covered in detail in [4]. The MATLAB comprises three main files that must be

 24

executed in the correct order. The first file, extract_v5.m, generates the modulation

coefficient for a test target. The second file, mathost_v5.m, simulates the phase samples

provided by the DRFM and the reference signal required by the ISAR receiver. The last

file, simhwchk_v5, simulates the DIS signal processing, generates the modulated ISAR

waveforms, and simulates the ISAR compression process to produce a range-Doppler

image of the test target. The key parameters used in [5] are consolidated in Table 2.

Several test target profiles with different target extent are also created. The choice

of the test target profile decides the number of range bin modulators involved to perform

the modulation. The scatterer distribution for a test target spanning 32 range bins as a test

pattern is displayed in Figure 8. The simulated range-Doppler image of a test target

spanning 32 range bins is displayed in Figure 12. By comparing Figure 8 and Figure 12,

we can recognize the superstructure of the ship such as the two masts at both ends of the

ship as well as the wheelhouse located in the center of the ship.

Table 2. Key Parameters Used in the Simulation of the DIS

1. ISAR LFM Waveforms

PRF 200 Hz

Number of pulses for integration 128

Bandwidth 500 MHz

2. DRFM

Sampling frequency 1 GHz

3. DIS

Number of bit for phase samples 5 bits

Number of bit for phase quantization, kp 5 bits

Number of bit for gain control code, kg 4 bits

 25

F. IDENTIFYING THE DIS TEST TARGET

Compared with the ISAR image of the U.S.S. Crockett in Figure 1, there appear

to be banding gaps consistently displayed in the Doppler frequency domain of Figure 12.

This can be explained by the limitation of the ship target profile. The surface of a real

ship is continuous, whereas the ship target profile is constructed using a limited number

of discrete scatterers. The latter results in the Doppler component of the target return to

be discrete, which causes the gaps to appear. Using the coefficients calculated with the

actual scattered electromagnetic field can eliminate the presence of these banding gaps

due to the complex interactions of the near-field reflections.

Figure 12. Simulated Range-Doppler Image of 32-Range Bin Test Target

The ISAR image of the U.S.S. Crockett in Figure 1 also contains blurred regions,

whereas the false target created by the DIS using the test pattern appears clear and

distinct. The real image is blurred because the movement of a real ship is complex and

cannot be adequately compensated by the ISAR image realignment and phase

compensation. The DIS image appears sharp because the false target signal created using

digitally quantized phase and gain coefficient can be compensated fully by the ISAR.

 26

The requirement on the fidelity of the range-Doppler image varies according to

mission requirements and platform capability. The fidelity can be enhanced by increasing

the number of pulses integrated into the ISAR compression process as shown in Figure 6.

When that happens, the lack of details on the test target is even more apparent and is

demonstrated in Figure 13. The compression results provide significant insight into the

coefficient to the DIS image formation. Although the scattered EM field from an actual

ship in the sea provides a realistic target signature from which target coefficients can be

extracted, no insight into the overflow characteristics and gain quantization effects in the

image formation process and the influence of the coefficients on that process can be

determined.

Figure 13. Gaps Developing on False Target as Number of Integrated Pulses

Increases

 27

G. CHAPTER SUMMARY

In Chapter III, an overview of the DIS was provided. Also described was the

generation of the modulation coefficients using the target return constructed based on a

test target profile. The internal operation of the DIS was also featured in the chapter. A

false target image was presented at the end of the chapter, and some of the existing

shortcomings of the image were highlighted as well. In the next chapter, the design of the

I/Q phase processor that uses the CORDIC algorithm is featured.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

IV. THE CORDIC PROCESSOR

A. OVERVIEW

The I/Q phase converter is a critical component of the DIS electronic warfare

architecture as it is responsible for providing the phase samples to the DIS for gain and

phase modulation. The origins of the phase samples are the transmitted RF waveforms

intercepted and stored in the DRFM. The I/Q phase converter processes the I and Q

components of these digitized waveforms and creates phase samples for the DIS.

1. Arctangent Function

The I and Q components of an ISAR waveform sample can be combined to form

a complex number z = x + jy, with the I component being the real part and the Q

component being the imaginary part. The phase of z is defined as the angle from the

positive real x-axis in the counter clockwise direction. A way to measure this angle is to

perform the division of y by x and apply the result to the arctangent function. An example

of angle measurement for a complex number is shown in Figure 14.

Figure 14. Angular Measurement for a Complex Number

 30

The phase angle of the complex number z1 is  , which can be expressed as

1

arctan

tan .

y

x

y

x





 
  

 

 
  

 

 (4.1)

The phase angle of the complex number z2 is  ,which can be expressed as

 arctan
y

x


 
  

 
. (4.2)

As  is a reflex angle (more than 180o), it can also be expressed as

12 tan 2

y

x
     
    

 
. (4.3)

2. Phase Quantization

The phase samples and the phase coefficients are quantized at kp-bits. The current

version of the DIS is based on a five-bit quantization scheme where 32 distinct five-bit

binary words are used to represent angles from 0o to 360o. The angle resolution is,

therefore, 11.25o per bit. The representation of the phase angles using five-bit phase

resolution is displayed in Table 3.

B. COORDINATE ROTATION DIGITAL COMPUTER (CORDIC)

The CORDIC algorithm is chosen as the method to perform the complex-to-phase

conversion. The algorithm uses vector rotations to solve trigonometric functions. There

are two main reasons for choosing CORDIC. First, it is a hardware efficient algorithm

that implements vector rotations using only shift and add operations. Second, it allows a

pipelined architecture, which optimizes the throughput.

 31

Table 3. Representation of Phase Angles Using Five-Bit Resolution

Binary

Representation

Values of

Binary

Representation

Phase

Angle

Binary

Representation

Values of

Binary

Representation

Phase

Angle

00000 0 0 10000 16 180

00001 1 11.25 10001 17 191.25

00010 2 22.5 10010 18 202.5

00011 3 33.75 10011 19 213.75

00100 4 45 10100 20 225

00101 5 56.25 10101 21 236.25

00110 6 67.5 10110 22 247.5

00111 7 78.75 10111 23 258.75

01000 8 90 11000 24 270

01001 9 101.25 11001 25 281.25

01010 10 112.5 11010 26 292.5

01011 11 123.75 11011 27 303.75

01100 12 135 11100 28 315

01101 13 146.25 11101 29 326.25

01110 14 157.5 11110 30 337.5

01111 15 168.75 11111 31 348.75

1. CORDIC Theory

The CORDIC theory is covered in this section. In Figure 15 a vector with

magnitude Z has a phase angle of  . It is subsequently rotated by an angle  in the

counter clockwise direction. At its first position, the components of the vector can be

expressed as

 cosox Z  (4.4)

and

 sinoy Z  . (4.5)

 32

Figure 15. A Vector Being Rotated Counter-Clockwise by Angle 

After the rotation, the components of the resulting vector can be expressed as

 
1 cos()

cos cos sin sin

cos cos sin sin

cos sin

cos (tan)

 

   

   

 

 

 

 

 

 

 

o o

o o

x Z

Z

Z Z

x y

x y

 (4.6)

and

 
1 sin()

cos sin sin cos

cos sin sin cos

sin cos

cos (tan).

o o

o o

y Z

Z

Z Z

x y

y x

 

   

   

 

 

 

 

 

 

 

 (4.7)

By conforming tan to take on values such as 2 i where i is the rotation index, the

multiplication of 2 i is equivalent to a shift operation that can be easily implemented.

The cos term can be expressed

  1

2

cos cos tan 2

1
.

1 2

i

i

  








 (4.8)

 33

Being an even function, (4.8) can be treated as a scale constant regardless of the direction

of rotation. The general expression for the x and y components of the resulting vector

after every subsequent rotation are xi and yi, [12] and can be expressed as

 1
2

1
(2)

1 2

i

i i i i
i

x x y d 




 


 (4.9)

and

 1
2

1
(2)

1 2

i

i i i i
i

y y x d 




 


 (4.10)

where 1 id depending on the direction of rotation. The constant scale factor for every

rotation
21 / 1 2 i

can be collectively treated as the system gain An of the CORDIC

processor. This system gain can be expressed as

21 2 i

n

n

A   . (4.11)

As the number of rotations increases, the system gain approaches a value of 1.647.

With the rotation angle conformed to  1tan 2 i
, the magnitude becomes smaller

with each rotation. An angle accumulator can be used to track the net angular

displacement in one direction. If the initial angle is made known as well, the angle

accumulator reveals the vector angle after the final rotation. The angle accumulated can

be defined as

  1

1 tan 2 i

i i iz z d  

   . (4.12)

2. Vector Rotation Mode

There are two operating modes of CORDIC: rotation mode and vectoring mode.

In rotation mode, a vector is made to rotate a specified angle in one direction

progressively over several smaller rotations. The vectoring mode is used to find the angle

of an input vector. At each iteration, the CORDIC rotates the vector toward the positive

axis with the objective of reducing the y component of the resulting vector after each

rotation. If the y component is negative, the next rotation is made in the counterclockwise

direction, and the angle accumulator subtracts the angle displaced from the last rotation.

If the y component is positive, the resultant vector is rotated in the clockwise direction,

 34

and the angle accumulator adds the last displaced angle. At the end of the final iteration,

the angle accumulator contains the total angular displacement, which is the result of the

arctangent function. The CORDIC equations in vectoring mode are

 1 2 i

i i i ix x y d 

   , (4.13)

 1 2 i

i i i iy y x d 

   , (4.14)

and

 1

1 tan (2)i

i i iz z d  

   (4.15)

where 1id   if yi < 0 and 1id   if yi is otherwise. As the number of iterations

approaches infinity, the final results are

 2 2

n N o ox A x y  , (4.16)

 0ny  , (4.17)

 1 0
0

0

tann

y
z z

x

  
   

 
, (4.18)

and

21 2 i

N

n

A   . (4.19)

3. Initialization of the Angle Accumulator

The CORDIC algorithm mentioned so far in this chapter is only effective when

the angle of the vector of interest is between −90o and 90o, a range that lies in the first

and fourth quadrants. To include vectors in the other two quadrants, an initial rotation is

required to bring the vector into either the first quadrant or the fourth quadrant. In other

words, z0 is initialized at 0o when the vector is in the first or fourth quadrant, 90o when it

is in the second quadrant, and −90o when it is in the third quadrant [13]. The values for

xo, yo, and zo after the initialization are summarized in Table 4. A flow chart that

summarizes the CORDIC vectoring mode is shown in Figure 16.

 35

Table 4. Values of xo, yo, and zo for Different Quadrants

4. Design Methodology for I/Q Phase Converter

The first step to design the I/Q phase converter is to model a CORDIC processor

in MATLAB. The objective is to develop a benchmark to evaluate the performance of the

CORDIC processor when it is modeled in the Verilog hardware description language.

Although there is an existing CORDIC function built inside MATLAB, building one

from scratch grants the design team full control of the CORDIC algorithm and access to

xi, yi, and zi, which can subsequently be used to troubleshoot the Verilog model. The

MATLAB model was first built using floating-point numbers to allow us to focus on

addressing implementation error and algorithmic error. After the implementation of the

CORDIC in floating-point format was assessed to be correct, a new model that calculated

using fixed-point numbers was subsequently developed.

C. FLOATING-POINT MODEL

The floating-point model is relatively straightforward to implement as it can be

constructed based on the flow chart in Figure 16. The inputs for the model are the I and Q

values, which represent the vector Z = I + j Q. The number of rotations or iterations is

decided by the parameter “iter.” Since the number of iterations affects the accuracy of the

results, the design requires a suitable figure be identified.

 36

Figure 16. Flow Chart for CORDIC Vectoring Mode

 37

Before commencing the iterative rotation, the model determines whether there is a

need for an initial rotation by checking the sign of I and Q to determine in which

quadrant the input vector lies. The coordinates and angle of the vector after the initial

rotation are stored inside three arrays: “X,” “Y,” and “Z.” The code to execute this check

is listed as follows:

.

The rotation angles applied for each rotation are stored in the array “angleLUT,”

which is defined as:

.

For a CORDIC processor that executes eight rotations, the stored rotation angles

are shown in Table 5.

Table 5. Rotation angles for an Eight-Iteration CORDIC Processor

Iteration 1 2 3 4 5 6 7 8

Angle

(degree)
45 26.5651 14.0362 7.1250 3.5763 1.7899 0.8952 0.4476

The rotation angles become smaller and more precise after each subsequent iteration,

which refines zi to become closer to the actual phase angle of the vector.

The series of recursive rotations begins next. The direction of rotation “d(i)” is

determined by the sign of yi. The code to execute the series of rotations is listed as

follows:

 38

.

1. Simulation and Results

A vector Z= −45 + j23 with an angle of 152.928o was used to demonstrate the

CORDIC functionality. A visual representation of the vector rotations is presented in

Figure 17. The input vector, being in the second quadrant, was rotated 90o in the

clockwise direction to the first quadrant. The series of eight rotations followed next,

gradually moving the vector towards the positive X-axis. The accumulated angle zi after

every iteration is shown in Figure 18. It can be seen that zi tends to converge toward the

actual phase angle of the vector.

The numerical results from every iteration of the CORDIC algorithm are

presented in Table 6. The angular displacement introduced by each rotation is listed in

the column titled “Rotated Angle.” The absolute values of these angles equal the angles

kept in “angleLUT”, and their signs indicate the direction of rotation. In the “Absolute

phase error” column, the difference between the phase angles of the vector Z and zi after

every rotation is shown, and they tend to get smaller, meaning that zi in general gets

closer to the actual phase value as well.

 39

Figure 17. Vectoring Mode CORDIC Iterations

Figure 18. Cumulative Angle through Iterations

 40

Table 6. CORDIC Calculation for Each Iteration

The magnitude of Z is
2 245 23 50.5371  . The magnitude calculated by the

CORDIC algorithm is actually the magnitude of xi. In Table 7, we see that as the iteration

continues, the magnitude of xi has a scale factor that tends toward 1.647.

Table 7. Magnitude of xi and Scale Factor in Each Iteration

If I and Q are eight-bit binary words, there are a total of 261,121 combinations of

inputs in all four quadrants. The surf plots of the results of the arctangent(Q/I) using a

trigonometric function and using an eight-iteration CORDIC are presented in Figure 19

and Figure 20. The two surf plots bear a strong resemblance to each other. Based on the

results obtained, we assessed that the CORDIC precise calculation was implemented

correctly in the floating-point format.

Iteration xi yi zi (deg) Rotated Angle (deg) Absolute phase error (deg)

i=0 23 45 90 NA 62.92791976

i=1 68 22 135 -45 17.92791976

i=2 79 -12 161.5650512 -26.56505118 8.637131415

i=3 82 7.75 147.5288077 14.03624347 5.399112053

i=4 82.96875 -2.5 154.6538241 -7.125016349 1.725904296

i=5 83.125 2.685546875 151.0774897 3.576334375 1.850430079

i=6 83.20892334 0.087890625 152.8674003 -1.789910608 0.060519471

i=7 83.21029663 -1.212248802 153.762574 -0.89517371 0.83465424

i=8 83.21976732 -0.56216836 153.3149598 0.447614171 0.387040069

Iteration Xi |-45+23j|/Xi

i=0 50.53711507 1

i=1 71.47027354 1.414213562

i=2 79.906195 1.58113883

i=3 82.36542054 1.629800601

i=4 83.00640624 1.642484066

i=5 83.16837011 1.645688916

i=6 83.20896976 1.646492279

i=7 83.21912648 1.646693254

i=8 83.22166609 1.646743507

 41

Figure 19. Surf Plot for Arctangent(Q/I) Using Floating-Point Precision

Calculation

Figure 20. Surf Plot for Arctangent(Q/I) Solved Using Eight-Iteration CORDIC

 42

2. Error Analysis

Taking a closer look at Table 6, we see that the absolute phase error did not

always decrease after every rotation. A similar observation is also mentioned in [14].

Nonetheless, there is a positive correlation between the total number of iterations and the

accuracy of the CORDIC solution. The angle accumulated by zi after every rotation is

represented by the basic angles that are stored in “angleLUT.” As these basic angles

become smaller and more precise, an increase in the number of iterations allows the

subsequent calculation to become more precise as well.

An analysis of this relationship was carried out. The CORDIC algorithm was used

to compute the phase angles with I and Q taking on eight-bit binary numbers from all

four quadrants. The experiment was repeated with the number of CORDIC iterations

varying from one to 18. The maximum phase error was logged for each CORDIC

iteration and is presented in Table 8. The results affirm the correlation between iteration

and accuracy. In addition, we observe that the magnitude of the error after i iterations is

less than 2 i , which means the phase angle calculated is accurate to i binary digits.

D. FIXED-POINT MODEL

Having verified that the CORDIC algorithm was implemented correctly, we next

convert the model to calculate the results of xi, yi, and zi using a fixed number of integer

bits and fraction bits. The word format of the CORDIC inputs and output are aligned to

the word format used by the DRFM memory and the DIS, as shown in Figure 21. The I

and Q inputs are represented using eight integer bits and one sign bit, and the phase

output of the CORDIC uses five integer bits to represent 0o to 360o.

1. Word Length

The DIS uses the quantization scheme in Table 3 to represent the values of the

phase angle. On the other hand, the CORDIC uses five-bit signed numbers to represent

angles, which are between −180o and 180o. This means if the vector phase angle is 270o,

the CORDIC algorithm returns −90o. This does not pose a concern to the DIS because

the binary expression of 270o using unsigned five-bit numbers and the binary expression

 43

of −90o using signed five-bit numbers are both ‘11000’. The quantization scheme of the

CORDIC algorithm is listed in Table 9.

Table 8. Maximum Angular Error with Every Incremental Iteration

Iteration
Max absolute phase

error (degree)

Max absolute phase

error (radian)
Log2(error)

1 45 0.78539816 −0.348503871

2 26.56505118 0.46364761 −1.10889938

3 14.03624347 0.24497866 −2.029271994

4 7.125016349 0.12435499 −3.007463642

5 3.576334375 0.06241881 −4.001875337

6 1.789399349 0.03123091 −5.00088157

7 0.895169329 0.01562365 −6.000124455

8 0.447593141 0.00781197 −7.000097135

9 0.223808221 0.00390619 −8.000022033

10 0.111902544 0.00195307 −9.000042231

11 0.055949652 0.00097651 −10.00008401

12 0.027973199 0.00048822 −11.0001679

13 0.013986868 0.00024412 −12.00014022

14 0.006993631 0.00012206 −13.00009947

15 0.003497044 6.1035 × 10−5 −14.00000537

16 0.001748515 3.0517 × 10−5 −15.00001074

17 0.000874253 1.5259 × 10−5 −16.00001886

18 0.000437121 7.6292 × 10−6 −17.00003773

Figure 21. I/O Bit Formats for CORDIC Phase Converter

 44

Table 9. Quantization Scheme for DIS versus CORDIC

DIS Quantization Scheme CORDIC Quantization Scheme

Phase

Angle

(degree)

Binary

Representation

Values of

Binary

Representation

Phase output

from

CORDIC

(degree)

2s Complement

Representation

Values of

Binary

Representation

0 00000 0 0 00000 0

11.25 00001 1 11.25 00001 1

22.5 00010 2 22.5 00010 2

33.75 00011 3 33.75 00011 3

45 00100 4 45 00100 4

56.25 00101 5 56.25 00101 5

67.5 00110 6 67.5 00110 6

78.75 00111 7 78.75 00111 7

90 01000 8 90 01000 8

101.25 01001 9 101.25 01001 9

112.5 01010 10 112.5 01010 10

123.75 01011 11 123.75 01011 11

135 01100 12 135 01100 12

146.25 01101 13 146.25 01101 13

157.5 01110 14 157.5 01110 14

168.75 01111 15 168.75 01111 15

180 10000 16 −180 10000 −16

191.25 10001 17 −168.75 10001 −15

202.5 10010 18 −157.5 10010 −14

213.75 10011 19 −146.25 10011 −13

225 10100 20 −135 10100 −12

236.25 10101 21 −123.75 10101 −11

247.5 10110 22 −112.5 10110 −10

258.75 10111 23 −101.25 10111 −9

270 11000 24 −90 11000 −8

281.25 11001 25 −78.75 11001 −7

292.5 11010 26 −67.5 11010 −6

303.75 11011 27 −56.25 11011 −5

315 11100 28 −45 11100 −4

326.25 11101 29 −33.75 11101 −3

337.5 11110 30 −22.5 11110 −2

348.75 11111 31 −11.25 11111 −1

 45

The number of integer bits and fraction bits for xi, yi, and zi are determined next.

As the iteration carries on, xi grows and its magnitude converges toward a value that is

the magnitude of the input vector times the scale factor of 1.647. The largest magnitude,

when I and Q have a magnitude of 255, is

      2 2

max
255 255 1.414 255 1.414 I   Z (4.20)

where I is the magnitude of I. This leaves xn to be

        1.647 1.414 255 2.331 I nx . (4.21)

As a result, xi has to be given two more integer bits, making a total of ten integer bits plus

one sign bit in order to have enough accuracy. With every rotation, yi becomes smaller

and requires more precision, and, hence, more fraction bits; otherwise, the next direction

of rotation could be wrong and result in an incorrect add/subtract operation of the rotation

angle from “angleLUT.” In addition, zi also receives one more integer bit, giving it a total

of five integer bits and one sign bit. The additional integer bit is required when

calculating a vector that has a phase angle close to 180o or −180o. As the initial few

rotations can all be made in the same direction, at one stage zi could become larger than

180o or less than −180o, which are not representable by a five-bit signed number; hence,

the need to introduce an additional integer bit. As zi converges more, the vector returns to

quadrants two or three, and the subsequent results only require four integer bits for

representation.

2. Implementation Using MATLAB

The changes made in order to implement a CORDIC processor using fixed

number format are the following:

1. The fixed-point numbers are constructed using the ‘fi(v,s,w,f)’ function in

MATLAB where ‘v’ is the value of origin word, ‘s’ indicates whether the

fixed-pointe number is signed or unsigned, ‘w’ is the length of the entire

fixed-point number, and ‘f’ is the number of fraction bits.

 46

2. As the phase angles are quantized at 11.25o per bit, the rotation angles in

“angleLUT” are divided by 11.25 before being used in the “fi” function as

parameter ‘v’.

3. The multiplication by 2i is carried out by using the bit-shift operation – the

‘bitsra(a, k)” function where ‘a’ is right-shifted arithmetically by k number of

bits.

4. After all the rotations are completed, the results are rounded to the nearest

integer bit, and the five least significant integer bits are extracted to form the

phase result of the CORDIC processor.

3. Simulation and Results

The same complex vector Z = −45 + 23j is used to test the CORDIC processor

functionality in using fixed-point numbers. A visual representation of the vector rotation

is presented in Figure 22, and the accumulated angles zi after every iteration are shown in

Figure 23. Just like the results from the floating-point model, the vector was

progressively rotated toward the positive x-axis, and calculated angles converged toward

the theoretical value. The numerical results from every iteration of the CORDIC are

presented in Table 10. Here, the values of yi and the ones from Table 6 share the same

sign, implying that the vector was being rotated in the same direction for each iteration in

both simulations.

Table 10. CORDIC Calculation for Z = −45 + 23j

Using Fixed-Point Numbers

 47

Figure 22. CORDIC Iterations Using Fixed-Point Numbers

Figure 23. Cumulative Angle through Iterations Calculated

Using Fixed-Point Numbers

The binary representation of zi is shown in Table 11. The phase stored in z8 was

used to derive the final result by following the procedure in Table 12.

 48

Table 11. Binary Representation of zi for Z = −45 + 23j

Iteration zi Iteration zi

i=0 0010000000000 i=5 0011010110110

i=1 0011000000000 i=6 0011011001010

i=2 0011100101110 i=7 0011011010100

i=3 0011010001110 i=8 0011011001111

i=4 0011011011111

Table 12. Steps to Represent CORDIC Result for Z = −45 + 23j

Using Five Bits

S/N Steps Result

1
Extract the five least significant integer bits and the

most significant fraction bit.

011011

2
If the fraction bit is ‘1’, increase the five-bit number

by 1.
01110

3
Multiply decimal representation of the result by

11.25o to get the phase angle.
14 × 11.25o =

157.50o

4
Find the phase error by applying

tan−1(Q/I) − CORDIC result.

152.927919o − 157.50o =

−4.572080o

To illustrate that the model works for a vector that is in quadrant three, another

vector is used: Z2 = −45 − 23j. The binary representation for zi is shown in Table 13.

Table 13. Binary Representation of zi for Z = −45 − 23j

Iteration zi

i=0 1110000000000

i=1 1101000000000

i=2 1100011010010

i=3 1100101110010

i=4 1100100100001

i=5 1100101001010

i=6 1100100110110

i=7 1100100101100

i=8 1100100110001

 49

The final calculation, as illustrated in Table 14, yields ‘10010,’ which represents

202.50o.

Table 14. Steps to Represent CORDIC Result for Z = −45 − 23j

Using Five Bits

Step Procedures Result

1
Extract the five least significant integer bits

and the most significant fraction bit.

100100

2
If the fraction bit is ‘1’, increase the five-bit

number by 1.
10010

3
Multiply decimal representation of the

result by 11.25o to get the phase angle.
18 × 11.25o = 202.50o

4
Find the phase error by applying

tan−1(Q/I) − CORDIC result.

(−152.927919o + 360o) −

202.50o = 4.572080o

To test the ability of the CORDIC processor to handle interim angles that are

larger than 180o, the vector Z3 = −230 + 1j was used. The numerical result is shown in

Table 15. For iteration i = 1, 2, 3 and 4, the vectors were rotated in the same direction,

and this caused z4 to exceed 180o, creating an overflow into the second most significant

bit (MSB) which was added to contain this situation. The subsequent iteration featured

rotation in the opposite direction, bringing z5 back below 180o and toward the correct

value eventually. After all the rotations were completed, z8 was rounded to the nearest

integer bit, and the CORDIC processor returned −180o or ‘10000’ as the result. The DIS

received the phase result as ‘10000’ as an unsigned number and interpreted it as 180o.

A surf plot is displayed in Figure 24, from which we see that the results of the

arctangent function solved using the CORDIC algorithm are quantized into 32 values.

Based on the results of the test conducted thus far, we assess that the CORDIC processor

using fixed-point numbers was implemented correctly.

 50

Table 15. CORDIC Calculation for Z = −230 + 1j

Using Fixed-Point Numbers

Figure 24. Surf Plot for Arctangent(Q/I) Solved by Eight-Iteration CORDIC

Using Floating-Point Precision Calculation

 51

4. Error Analysis

The requirement on precision is investigated next. Since the last stage of the

CORDIC process involves rounding the first fraction bit to the nearest integer bit, the

CORDIC processor must be able to resolve 5.625o. This means that the maximum error

must be less than that. The criteria to represent an input vector with an angle around

5.625o as ‘00000’ or ‘00001’ is illustrated in Figure 25.

The eight-iteration CORDIC algorithm that was used so far is unable to provide

that kind of precision. The absolute angular error distributed over the angles between

−180o and 180o is shown in Figure 26. A magnified version of the figure is shown in

Figure 27, in which we see that the CORDIC is not accurate enough in some instances.

The accuracy can be increased by increasing the number of iterations and the fraction bits

for xi, yi, and zi. The improvement in accuracy when the number of iterations increases

from eight to 16 and then to 18 is shown in Figure 28. In fact, after 18 iterations, all the

error magnitudes are less than 5.625o. The maximum errors for five iterations to 18

iterations are presented in Table 16. Based on this result, we decided that the CORDIC

processer will use 18 iterations in the design.

Figure 25. Criteria for Rounding Up or Down

 52

Figure 26. Absolute Angular Error for an Eight-Iteration CORDIC Processer

Figure 27. Close-Up View of Figure 25

 53

Figure 28. Angular Error for 8-Iteration, 16-Iteration, and 18-Iteration

CORDIC Processors

Table 16. Maximum Phase Error for CORDIC Processors with

Different Iterations (5 to 18)

 54

E. IMPLEMENTATION USING VERILOG

The implementation of the CORDIC algorithm using the Verilog hardware

description language is discussed in this section. Verilog was chosen since the DIS has

already been implemented in Verilog. Instead of utilizing existing CORDIC Intellectual

Property cores created by a Field Programmable Gate Array original equipment

manufacturer such as Xilinx or Altera for their own products, the codes that describe the

CORDIC processor were crafted based on the CORDIC Equations (4.13), (4.14), and

(4.15). The advantage of doing this is that the hardware implementation does not have to

be tied to a specific hardware platform.

1. Overview

The Verilog code for CORDIC processing is adapted from an open source version

written for implementing the CORDIC algorithm in the rotation mode [15]. The code

uses behavioral modeling that shares a similar coding style with MATLAB. In fact, the

MATLAB code and the Verilog read very similar to each other and only differ in a few

ways. First, the signs of xi and yi are determined by their MSB, which is a ‘0’ for a

positive 2s complement number and ‘1’ for a negative number. Second, every rotation is

triggered by an event, which in this case is the positive edge of the rising clock. Third,

registers are used to hold the values for xi, yi, and zi, and to pass them to the next stage of

processing, which results in the CORDIC processor having a pipelined architecture. The

Verilog code for the CORDIC processor can be found in Appendix B.

2. Simulation and Results

The simulation began after the Verilog codes for the CORDIC processor and its

test bench files were completed and able to be compiled. The test cases and results are

described in the following subsections.

a. Input: Z = −45 + 23j

The same complex vector previously used to test the MATLAB models was used

again to test the Verilog model. The CORDIC processor was able to return the phase

result as ‘01110’, which is identical to the one generated by the MATLAB model. The

 55

values of xi, yi, and zi from the Verilog model were converted to an unsigned number and

compared with those from the MATLAB model. The results, featured in Figure 29, show

that these values are identical. The screenshot of the simulation in ModelSim is presented

in Figure 30.

Figure 29. Comparison of xi, yi, and zi Calculations by MATLAB and Verilog

b. Input: I = 0, Q = 0

The next simulation aimed to test the ability of the CORDIC processor to

calculate the phase angle when the inputs are the origin coordinates. While the values for

xi and yi remain at zero, the sign of yi is decided as ‘0’ during each iteration, causing zi to

grow by accumulating more rotation angles from the “angleLUT.” This is avoided by

forcing the final phase output to be zero if x18 is checked and found to be zero. The

screenshot of the simulation in ModelSim is presented in Figure 31. Here, we see that the

phase output generated is zero after 18 positive-rising edges of the clock.

c. Pipeline

To test this critical feature, three inputs were clocked consecutively over three

clock cycles. The screenshot of the simulation in ModelSim is presented in Figure 32,

 56

which shows that 18 clock cycles later, the three results emerged from the CORDIC

processor over three consecutive clock cycles in a first-in-first-out fashion.

d. Input: All Possible Combinations

The final test involves using all the possible nine-bit integer values as input. The

results are then compared to results generated by MATLAB and show a complete match.

F. CONCLUSION

The design and testing of an I/Q phase converter was discussed in this chapter.

The result was an 18-iteration CORDIC processor which takes 18 clock cycles to

generate phase samples quantized at five bits for the DIS in a pipelined manner. The

simulation of sea clutter to improve the false target image is examined in the next

chapter.

57

Figure 30. ModelSim Simulation Using I=−45, Q=23 with Phase Result (Zout) Showing 5’b01110

Figure 31. ModelSim Simulation Using I=0, Q=0 with Phase Result (Zout) Showing 5’b00000

58

Figure 32. ModelSim Simulation Showing Pipelined Output

 59

V. SEA CLUTTER TARGET PROFILE

The characteristics that an ISAR operator can use to identify a false image

synthesized by the DIS are described in Chapter I. The false target profile is built with a

limited number of point scatterers and does not include the environment such as the

clutter return and the noise return. In this chapter the inclusion of a sea clutter profile in

the DIS with the aim of making the false target appear realistic is discussed.

A. COHERENT SEA CLUTTER SIMULATIONS

The sea clutter model used in this thesis is adapted from the research done by

previous students and scientists from the Center for Joint Services Electronic Warfare.

The sea clutter model was developed initially by Brooks [16], who studied the works of

Ward, Watts, and Walker. The model was subsequently improved by Dr. Sebastian

Teich, a visiting scientist from Germany, to support the design of an antenna for surface

vessels. With help from Dr. Teich, the model was modified to fit the context of a high-

resolution radar mounted on an airborne platform. In the model, the amplitude and

Doppler of the sea clutter are random variables that fluctuate according to two separate

random distributions.

1. Clutter Amplitude Model Using the KA Distribution

In his sea clutter model, Brooks used a KA distribution to calculate the return sea

clutter power [16]. The model allows the user to simulate the sea clutter by specifying the

sea state condition, RF polarization, a normalized RCS model, and a wind direction. In

this research, a horizontal polarization and a normalized RCS model developed by the

Naval Research Laboratory [17] is used. Unlike a surface radar, an airborne radar has a

different grazing angle as displayed in Figure 33.

 60

Figure 33. Clutter Geometry for Airborne ISAR. Adapted from [18].

From [20], given an aircraft at height h above the ground, the grazing angle graz at a

given range R can be expressed as

2

1sin
2 2

graz

e e

h h R

R r R r
   

   
 

 (6.1)

where re is the effective Earth radius. The relationship between R and graz at a constant h

is shown in Figure 34. The area of the illuminated patch c
A can be approximated as

 _ 3 sec() c az dB rISAR grazA R d (6.2)

where rISAR
d is the slant range resolution and _ 3az dB is the ISAR azimuth beamwidth.

This relation is shown in Figure 34.

a. The NRL Normalized RCS Model

The radar range equation is used to calculate the mean clutter return power o

RCP

and is expressed as

 61

2 0

0

3 4(4)

T t r c
RC

P G G A
P

R L

 


 (6.3)

where 0 is the normalized mean sea clutter scatter coefficient, which can be obtained

using the NRL model, and t
G and r

G are the transmit and receive gain, respectively.

Also, T
P is the peak power of the pulsed-ISAR waveform transmitted, L represents

losses, and  is the carrier wavelength. The NRL model describes an empirical

relationship, which is expressed as

  3 100

, 1 2 10

1

2 0.085 0.033 2

4 5

(2.75) log
log sin

(1 0.95)

(1)



 




 


  



  graz

graz GHz

HH VV graz

graz

SS

graz

c f
c c

c SS c

 (6.4)

where
0

, HH VV is the normalized co-polarized RCS, SS is the Douglas sea state, GHzf is the

carrier frequency in GHz, and 1 2 3 4, , ,c c c c , and 5c are free parameters that are adjusted to

minimize the average absolute deviation between the empirical equation and a set of data

collected by Nathanson [17]. The Douglas sea state describes the roughness of the sea

wave surfaces and is shown in Table 17. The free parameters values from the NRL model

are shown in Table 18.

Table 17. Summary of Sea State. Source: [17].

Sea State Description Wave height

(ft)

Wind speed

(kn)

Fetch

(nmi)

Duration

(h)

1 Smooth 0-1 0-6

2 Slight 1-3 6-12 50 5

3 Moderate 3-5 12-15 120 20

4 Rough 5-8 15-20 150 23

5 Very rough 8-12 20-25 200 25

6 High 12-20 25-30 300 27

7 Very High 20-40 30-50 500 30

 62

Table 18. Summary of NRL Model Free Parameters. Source: [17].

 Polarization

Constants Horizontal Vertical

c1  73.00  50.79

c2 20.78 25.93

c3 7.351 0.7093

c4 25.65 21.58

c5 0.00540 0.00211

b. Clutter Parameter Comparison

The inputs for the NRL RCS model are grazing angle, RF polarization, carrier

frequency, and sea state condition. For this thesis research, the RF polarization and the

carrier frequency are fixed to horizontal polarization and 10 GHz, which are normally the

specifications for an ISAR radar such as the APS/137 ISAR. The effect of the grazing

angle and sea state on the normalized RCS are presented in this section.

(1) Grazing Angle

Assuming that the height of the aircraft h remains constant, we see that the

grazing angle graz decreases as the slant range R increases. This is illustrated in Figure

34 with the main objective to show the relationship between R and graz . The effect this

has on 0 is illustrated in Figure 35 where 0 decreases as graz increases. The RCS of a

clutter patch c is the product of c
A and 0 , or 0 c cA . The relationship between c

and R, assuming h is constant, is displayed in Figure 36. The illuminated area c
A

increases significantly less and results in an overall decrease in the clutter patch c .

(2) Sea State

The effect the sea state SS has on 0 is displayed in Figure 37, which shows the

normalized RCS as a function of R for sea state 2 through 7. Here, it can be seen that an

increasing SS leads to an increase in 0 as well. Based on (6.3) the increase in 0

consequently increases the o

RCP as well and is shown in Figure 38 as a function of range

R.

 63

Figure 34. Grazing Angle versus Range

Figure 35. Normalized RCS versus Range

 64

Figure 36. RCS versus Range

Figure 37. Normalized RCS for Sea Clutter at Different Grazing Angles and SS

 65

Figure 38. Received Power from Sea Clutter at Different SS

c. Power fluctuation via Compound KA Distribution

The sea clutter simulation model developed by Brooks is comprised of a slow

moving component called texture that represents the local sea structures such as Bragg

scatterers and distributed white caps [16], [19]. It also includes a fast moving component

called speckle that represents structures such as sea spray, discrete white caps, and

bursts [20]. The texture is modeled using a gamma distribution, and the speckle follows

an exponential distribution. The final expression for the fluctuating sea clutter power is

expressed as

 0

1
(|) exp ()

(1) (1)
poiss

n

z
P z x P n

x n x n 





  
   

   


 (6.5)

where x is the texture, z is the clutter power, n is the number of instantaneous bursts

found in a range cell [19], [21], and ρ is the ratio of the burst power to the Bragg power.

A Poisson distribution is used to describe the occurrence of n, which is approximated by

1 , 0

() , 1

0, 2

poiss

N n

P n N n

n

  
 

  
  

 (6.6)

 66

where N is the probability of a spike.

2. Modeling of Fluctuating Sea Clutter Spectra

The model for the Doppler spectrum for a single range cell is [16]

2

2

(())
(, ,) exp

22

fv m xx
G v x s

ss

  
   

 
 (6.7)

where v is the Doppler frequency, ()fm x is the mean Doppler frequency as a function of

texture x, and s is the standard deviation. The mean frequency can be expressed as

0

() cosf w D

RC

x
m x f

P
  
 

   
 

 (6.8)

where α and β are expressed as [16], [22], [23]

  
2

11 0.25 kU  


    (6.9)

where 0.25k  for horizontal polarization and 0.18 for vertical polarization [16], [22].

The Doppler shift introduced by the motion of the transmitting platform is Df and is set to

zero for the relative motion to the clutter as is the case for a stationary ISAR radar. The

wind velocity U is approximated as [16]

  0.83.16U SS . (6.10)

The standard deviation of the clutter spectrum s follows a Gaussian distribution as

2

2

()
() exp

22

s

s

s m
p s

s





  
  

 
 (6.11)

where 20
s

  Hz, and the mean ms is given by

cos

0.2 w
s

U
m




 (6.12)

where w is the headwind direction.

3. Generating Random Sea Clutter Power and Doppler Spectrum

The fluctuating sea clutter power spectral density is generated when the mean

clutter power in (6.3) is applied to the distribution described in (6.5) and (6.7). The mean

 67

clutter power and the fluctuating power for each range bin within the radar main beam is

shown in Figure 39. The power spectral density, an example of which can be seen in

Figure 40, provides the information on phase and amplitude which can be used to create

the phase coefficient and gain coefficient for the sea clutter profile to improve the DIS.

The MATLAB code created to simulate the sea clutter for the DIS is found in Appendix

A and requires MATLAB code, KdistributionTexture.m, in order to work.

Figure 39. Mean Power and Fluctuating Power of Sea Clutter

B. PHASE AND GAIN COEFFICIENTS FOR THE SEA CLUTTER

In this section the simulation of sea clutter returns to an ISAR radar and the

extraction of the phase and the amplitude information from the sea clutter spectrum to

create the phase and gain coefficients are discussed.

In Table 19 contains a set of radar parameters that are used to simulate the sea

clutter return is given. Information on the operating environment is also included in the

table. The radar parameters used are similar to that of the APS 137 ISAR radar [4].

 68

Figure 40. Power Spectral Density of Sea Clutter at SS=2

Table 19. Radar Parameters and Operating Environment

Parameter Values Parameter Values

Frequency 10 GHz Elevation Beamwidth 4.5o

Range Resolution 0.3 m Azimuth Beamwidth 1.05o

Transmit Gain 32 dB PRF 200 Hz

Receive Gain 32 dB Bandwidth 500 MHz

Loss 3 dB Pulse integration 128

Power 500 W Polarization Horizontal

Operating Environment

Range 3,000 m Radar height 8,000 ft

Grazing Angle 54.4o Head wind direction 20o

Sea state 2

The sea clutter power density spectrum attributed to the radar main beam is

shown in Figure 41. The target, which spans 32 range bins, is assumed to be located in

the center of the radar beam. The spectra at these range bins are extracted and enlarged in

Figure 42.

The power spectral density diagrams for range bins 7, 13, 22 and 32 are shown in

Figure 43. The spectra appear different in shape, with range bins 13, 22, and 32 showing

a Gaussian outline while range bin 7 resembles a discrete target. They also have different

 69

degrees of ‘spikiness.’ Such wide-ranging differences reflect the probabilistic nature of

the complex wave surfaces of the sea clutter model.

Figure 41. Power Density Spectrum of Sea Clutter

Figure 42. Power Density Spectrum of Sea Clutter in Range Bins

Where Target Resides

 70

The power and Doppler components of the spectrum for each range bin are saved

and exported to extract_para_Ship_v5.m where they are used to reconstruct the sea

clutter return. Just like the target return in (3.1), the clutter return is in complex form and

can be represented as a function of the transmitted pulse index and coordinate location on

the range-Doppler profile map. It can also be consolidated at each range bin for each

pulse by

1

(, ,)
dN

d

ClutterSum Clutter r d n


 . (6.13)

The clutter return is added to the target return to form a new complex signal

(,)T r n , which is then used to generate the phase coefficient and gain coefficient. The

new complex signal is expressed as

 (,) (,) (,)  T r n T r n ClutterSum r n . (6.14)

Figure 43. Power Spectrum for Range Bins 7, 13, 22, 32

 71

1. Generating the Phase Coefficient with Sea Clutter

The phase coefficient for (,)T r n is generated in the same way as is the phase

coefficient for (,)T r n described in Chapter III. The phase angle of (,)T r n is derived

by using its real and imaginary components

 
 

 
 

(,) (,) (,)
(,)

(,) (,) (,)


     
     

     
T

imag T r n imag T r n ClutterSum r n
r n

real T r n real T r n ClutterSum r n
. (6.15)

Subsequently, the phase coefficient can be generated before it is quantized at five-bits

 (,) (, 1) (, 1) (,)          inc inc T Tr n r n r n r n . (6.16)

2. Generating the Gain Coefficient with Sea Clutter

Similarly, the gain coefficient is generated using the same method as described in

Chapter III as

   

(,) (,) (,)
(,)

max (,) max (,) (,)

  
  

  
N

T r n T r n ClutterSum r n
T r n

T r n T r n ClutterSum r n
. (6.17)

3. Simulation and Results

The phase and gain coefficients derived from (6.16) and (6.17) are used to

modulate the phase samples of the ISAR LFM signal. The output from the DIS is

returned to the DRFM and subsequently transmitted back to the ISAR. The resultant

range-Doppler images are discussed in the following subsection.

(1) Combined Image

The ISAR image that describes the range-Doppler profile of the target plus the sea

clutter (,)T r n is shown in Figure 44. Initially, the amplitude of the ship (,)T r n is

much larger compared to that of ClutterSum(r,n), causing the sea clutter to be

insignificant. This is caused by the estimates of the target ship RCS being too large. A

more accurate set of RCS values is found from a high-resolution range profile generated

using CST Microwave, an EM simulation software tool that uses a three-dimensional

Computer Aided Design model of a transport ship. This is related once again to the

 72

modeling of the false target and is reserved for future study. The inclusion of the sea

clutter has blurred the edge of the ship to some extent. The range-Doppler image of the

sea clutter on its own is shown in Figure 45. Unlike the ship target, the sea clutter

remains continuous in the Doppler axis.

(2) Effect of Different Sea States

The effect that sea state has on the sea clutter image is investigated next. The sea

clutter at sea states 3 and 4 was extracted and separately combined with the target return

of the ship to form two more range-Doppler images. The images for the ship target

without sea clutter and with sea clutter at sea states 2–4 are consolidated in Figure 46 for

comparison. We see that at higher sea states, more streaks of sea clutter appear on the

image, which can be explained by the higher level of power return due to the increase in

0 . In higher sea states, the velocity of the sea clutter and target increases. For this

simulation, the target is fixed in Doppler.

(3) Doppler Resolution

The sea clutter shown in Figure 42 is created based on a Doppler resolution

 clutterf of 1.5625 Hz and is able to appear continuous to an ISAR sharing the same

Doppler resolution f , as seen in Figure 45. If the ISAR increases its f further, the

sea clutter starts to display discontinuity as can be seen in Figure 47. The continuity in

the Doppler axis is restored by remodeling the sea clutter based on a higher Doppler

frequency resolution. As shown in Figure 48, when 0.78125 f Hz, the sea clutter

remodeled with 0.78125 clutterf Hz remained continuous, while the banding gaps

widened for the ship target.

 73

Figure 44. Range-Doppler Test Image of False Target and Sea Clutter

Figure 45. Range-Doppler Test Image of Sea Clutter

 74

Figure 46. Range-Doppler Test Images at Different Sea States

Figure 47. Sea Clutter (1.5625  clutterf Hz) Showing Discontinuity When

0.78125 f Hz

 75

Figure 48. Sea Clutter (0.78125  clutterf Hz) Showing Continuity When

0.78125 f Hz

(4) Number of Doppler Samples

The Doppler components at each individual range bin contribute to the formation

of the range-Doppler profile; therefore, the number of samples taken from the power

spectrum density determines the number of Doppler components and the appearance of

the sea clutter on the range-Doppler image which can be seen in Figure 49. In general, the

fewer the samples, the shorter the sea clutter appears.

(5) Creating a Blurry Ship Target

If the desired intent is just to blur the edge of the ship target without

oversaturating the entire ISAR image, this can be achieved by using only the sea clutter

return, which has similar Doppler frequencies to those of the ship target, to create

(,)T r n . As an example, suppose the minimum and maximum Doppler component of

the ship target in each range bin is min{ }Tid and max{ }Tid , respectively, where
T
i
d is the

set of all the Doppler frequencies that are present in a range bin i. The sea clutter returns

with Doppler frequencies that are greater than min{ }Tid f  and smaller than

 76

max{ }T
i
d f  can be used to construct (,)T r n , while the Doppler frequencies falling

outside this range are discarded. The result can be seen in Figure 50, in which the sea

clutter has managed to make the edge of the ship target appear blurred. In fact, the sea

clutter has even managed to cover the banding gap of the ship target to some extent.

White Gaussian noise can be added to make the simulated ISAR image, such as the one

shown in Figure 51, further resemble the real ISAR image that is shown in Figure 1.

Nevertheless, since the sea clutters are randomly generated, there is no guarantee that

they will appear at every range bin with sufficient amplitude to cover the gap such as the

one that is apparent in range bins 17 – 19 in Figure 50 and Figure 51.

Figure 49. Range-Doppler Test Images for Sea Clutter Formed Using Different

Numbers of Samples

 77

Figure 50. Test Image Showing the Use of Sea Clutters to Cover the Banding

Gaps of the False Target

Figure 51. White Gaussian Noise Added to Figure 50

C. CHAPTER SUMMARY

The simulation of sea clutter for a high-resolution airborne radar was

demonstrated in this chapter. Characteristics of the sea clutter range-Doppler profile were

also discussed. The limitation of improving the fidelity of the DIS false target using sea

clutter was also presented. Inevitably, the way ahead to improve the fidelity is to study

the EM return of the ship target in a real-world environment. This recommendation is

highlighted with other recommendations in the next chapter.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis has two objectives. The first objective was to design a phase converter

and implement it in Verilog to support the ongoing development of the DIS. The second

objective was to incorporate backscatter returns from the environment into the DIS false

target image in order to improve its fidelity, thereby improving DIS effectiveness as an

electronic protection solution for an ISAR.

In this thesis, a phase converter that utilized the CORDIC algorithm was designed

using MATLAB and subsequently implemented in Verilog. The phase converter

produced a five-bit phase result using nine-bit input I and Q data on each rising clock

edge after an 18-clock pulse latency delay. Much time and effort were put into

determining the number of iterations for the design so that the phase results would be

accurate using a resolution of five bits. The phase converter also used a pipelined design

that allowed the phase results to be produced on each clock cycle.

The creation of a sea clutter target profile for the DIS was also studied in this

thesis. An existing sea clutter simulation model for the surface platform was adapted and

modified to generate sea clutter for an airborne ISAR platform. The modified sea clutter

model retained the ability in generating sea clutter at different sea states, waveform

polarizations, and wind heading angle while using the normalized RCS model developed

by NRL for a high grazing angle up to 60o [17]. Using a random probabilistic model, we

generated the sea clutter Doppler power spectrum to create the phase and gain

coefficients for the sea clutter in the DIS. Since the sea clutter had a high Doppler

resolution, the sea clutter maintained a convincing appearance as the ISAR increased its

Doppler resolution.

In addition to the phase angle, the amplitude of the complex vector is another

output from the phase converter, but it was not used in the DIS design. This piece of

information is required to reconstruct the proper DRFM output power as shown in Figure

52. Since the amplitude is also scaled by a factor of 1.647, the CORDIC algorithm must

be modified in order to have this scale factor taken into account.

 80

Figure 52. Use of the Amplitude Output of the Phase Converter to Reconstruct

the ISAR Waveform

In this work, we evaluated the fidelity and image creation process of the DIS

using a test pattern image. Further, insight into the bit-resolution influence on image

quality was examined. Suggested future effort is to investigate a realistic image formation

process.

Going forward, validation of the sea clutter model by collecting data in the

Monterey Bay using a range-Doppler radar would aid in the creation of a realistic false

target. The banding gaps described in this research were due to the finite resolution of the

false target used to extract the imaging coefficients. A realistic false target can be

generated by illuminating and collecting the ISAR waveform from a detailed target

model using EM simulation software like CST Microwave Studio.

 81

APPENDIX A. MATLAB CODES

A. CORDIC IMPLEMENTATION USING FLOATING POINT NUMBERS

clear all

clc

iter=8;

I =0; % I signal

Q =0; % Q signal

ideal_angle = atan2d(Q, I);

X = zeros(iter+1,1); % Xin

Y = zeros(iter+1,1); % Yin

Z = zeros(iter+1,1); % Zout;

d = zeros(iter+1,1); % direction vector

angleLUT = atand(2.^-(0:iter-1));

if (I>=0 && Q >=0) || (I>=0 && Q<0) %Quadrant 1 or 4

 X(1) = I;

 Y(1) = Q;

 Z(1) = 0;

elseif I<0 && Q>=0 % Quadrant 2

 X(1) = Q;

 Y(1) = -I;

 Z(1) = 90;

elseif I<0 && Q<0 % Quadrant 3

 X(1) = -Q;

 Y(1) = I;

 Z(1) = -90;

end

% rotate the vector for iter-number of times

for i = 1:iter

 if Y(i) < 0

 d(i) = 1;

 else

 d(i) = -1;

 end

 X(i+1) = X(i) - Y(i)*d(i)*2^-(i-1);

 Y(i+1) = Y(i) + X(i)*d(i)*2^-(i-1);

 if(X(i+1)==0 && Y(i+1)==0) %if the inputs are the origin points

 Z(i+1)=0;

 else

 Z(i+1) = Z(i) - d(i)*angleLUT(i);

 82

 end

 fprintf('Iteration: %2d, Calculated angle after iteration: %7.3f, Rotated angle: %7.3f,

Error in degrees: %10g, Error in bits: %g\n',...

 [(i-1); Z(i); - d(i)*angleLUT(i);(Z(i)-ideal_angle);log2(abs(Z(i)-ideal_angle))]);

end

fprintf('Iteration: %2d (Last), Rotated angle: %7.3f, Error in degrees: %10g, Error in bits:

%g\n',...

 [(i); Z(i+1); (Z(i+1)-ideal_angle);log2(abs(Z(i+1)-ideal_angle))]);

for i = 1:iter

 fprintf('Iteration: %2d, Rotator magnitude: %g, Rotator scale factor: %g\n',...

 [i-1; sqrt(X(i)^2+Y(i)^2); sqrt(X(i)^2+Y(i)^2)/sqrt(I^2+Q^2)]);

end

 fprintf('Iteration: %2d (Last), Rotator magnitude: %g, Rotator scale factor: %g\n',...

 [i; sqrt(X(i+1)^2+Y(i+1)^2); sqrt(X(i+1)^2+Y(i+1)^2)/sqrt(I^2+Q^2)]);

figure (1)

cmap = colormap(lines(iter+3));

plot([0 I],[0 Q],'LineWidth', 2, 'Color',cmap(1,:))

legendInfo{1}=['Input Vector'];

hold on

plot([0 X(1)],[0 Y(1)],'LineWidth', 2, 'Color',cmap(2,:))

legendInfo{2}=['After initial rotation'];

for i=2:iter

 plot([0 X(i)],[0 Y(i)],'LineWidth', 2, 'Color',cmap(i+1,:));

 legendInfo{i+1}=['After rotation ' num2str(i-1)];

 hold on

end

plot([0 X(i+1)],[0 Y(i+1)],'LineWidth', 2, 'Color',cmap(i+2,:))

legendInfo{i+2}=['After rotation ' num2str(i), ' (Last)'];

yPos=0;

plot(get(gca,'xlim'), [yPos yPos], '-.k', 'LineWidth', 2);

legend(legendInfo)

hold off

grid on

xlabel('I')

ylabel('Q')

title('Vectoring Mode CORDIC Iterations')

figure(2)

plot(0:iter,Z(1:iter+1),'-dr','LineWidth', 2,'MarkerEdgeColor','k',...

 'MarkerFaceColor',[.49 1 .63],...

 'MarkerSize',10)

hold on

 83

yPos_angle=ideal_angle;

plot(get(gca,'xlim'), [yPos_angle yPos_angle], '-.k', 'LineWidth', 2);

legend('Calculated angle', 'Actual angle')

hold off

xlabel('Iteration')

ylabel('Angle (degrees)')

title('Cumulative Angle Through Iterations')

B. CORDIC IMPLEMENTATION USING FIXED-POINT

IMPLEMENTATION

clear all

clc

iter=18; % # of iteration

inputbit = 9; % 1 sign bit 8 integer bit

%%%%%%%%%%%%%%% I Q

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x = -230;

y = -1;

I = fi(x,1,inputbit,0); % I is a 9-bit word with 1 sign bit and 8 integer bit

Q = fi(y,1,inputbit,0); % Q is a 9-bit word with 1 sign bit and 8 integer bit

mag_ideal = abs(x+y*1i);

phase_ideal = atan2d(y, x);

%%%%%%%%%%%%%%% X Y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

frac_length = 18; % # fraction bit in X & Y

X = fi(zeros(iter+1,1),1,inputbit+2+frac_length,frac_length); % X array is a

9+frac_length+2(overflow) bit word with 1 sign bit, 10 integer bit and frac_length

fraction bit

Y = fi(zeros(iter+1,1),1,inputbit+2+frac_length,frac_length); % Y array is a

9+frac_length+2(overflow) bit word with 1 sign bit, 10 integer bit and frac_length

fraction bit

%%%%%%%%%%%%%%%% Z

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nbits = 5; % # bits in phase output

Z_fl = 17; % # fraction bit in phase

phase_res = 360/2^nbits; %angle per bit

angleLUT = fi(atand(2.^-(0:iter-1))/phase_res,1,nbits+Z_fl,Z_fl);

Z = fi(zeros(iter+1,1),1,nbits+Z_fl+1,Z_fl); % Z array is a 5+1+Z_fl bit word with 1 sign

bit, 5 integer bit (1 integer is a guard bit for overflow) and Z_fl fraction bit

d = zeros(iter,1); % direction vector

%%%%%%%%%%%%%%%%%%%%% Pre - rotation before

iteration%%%%%%%%%%%%%%%%%%

 84

% if (I>0 && Q >0) || (I>0 && Q<0), no requirement to pre-rotate vector

% if I<0 && Q>0, rotate 90 degree clockwise

% if I<0 && Q<0 rotate 90 degree counterclockwise

if (I>=0 && Q >=0) || (I>=0 && Q<0)

 X(1) = I;

 Y(1) = Q;

 Z(1) = 0;

elseif I<0 && Q>=0

 X(1) = Q;

 Y(1) = -I;

 Z(1) = fi(90/phase_res,1,nbits+Z_fl,Z_fl);

elseif I<0 && Q<0

 X(1) = -Q;

 Y(1) = I;

 Z(1) = fi(-90/phase_res,1,nbits+Z_fl,Z_fl);

end

%%%%%%%%%%%%%%%%%%%% start of iteration

%%%%%%%%%%%%%%%%%%%%%%%

for i = 1:iter

 if Y(i) < 0

 d(i) = 1;

 X(i+1) = X(i) - bitsra(Y(i), i-1);

 Y(i+1) = Y(i) + bitsra(X(i), i-1);

 Z(i+1) = Z(i) - angleLUT(i);

 else

 d(i) = -1;

 X(i+1) = X(i) + bitsra(Y(i), i-1);

 Y(i+1) = Y(i) - bitsra(X(i), i-1);

 if(X(i+1)==0 && Y(i+1)==0)

 Z(i+1)=0;

 else

 Z(i+1) = Z(i) + angleLUT(i);

 end

 end

end

%extract phase from the Z_array

a = bin(Z(iter+1)); %output in binary (integer + fraction bit)

b = a(length(a)-Z_fl+1); % 1st fraction bit (2^-1)

s = a(1);

c = a(2:length(a)-Z_fl); % phase output with only integer bit

if(bin2dec(b)==1) % if b is '1' round up c by 1

 e = dec2bin(bin2dec(c)+ 1, length(c));

 if(bin2dec(e) == 32)

 85

 e = dec2bin(0,length(c));

 end

else

 e = dec2bin(bin2dec(c), length(c));

end

f = bin2dec(e);

%extract magnitude from the X_array

mag_a = bin(X(iter+1)); %output in binary (integer + fraction bit)

mag_b = mag_a(length(mag_a)-frac_length+1); % 1st fraction bit (2^-1)

mag_c = mag_a(1:length(mag_a)-frac_length); % mag output with only integer bit

% if b is '1' round up c by 1

if(bin2dec(mag_b)==1)

 mag_e = dec2bin(bin2dec(mag_c)+ 1, length(mag_c));

else

 mag_e = dec2bin(bin2dec(mag_c), length(mag_c));

end

mag_f = bin2dec(mag_e);

fprintf('****Phase output*****\n');

fprintf('atand(y/x): %.12f\n', phase_ideal);

fprintf('Z output[before rounding]: %.12f (%s in binary) (%.12f degree)\n', (Z(iter+1)), a,

(Z(iter+1))*phase_res);

fprintf('phase error [before round]: %f\n', phase_ideal-((Z(iter+1))*phase_res));

fprintf('Z output [after rounding]: %d (%s in binary) (%.2f degree)\n', f, e, f*phase_res);

if(y<0 && f==0)

 fprintf('phase error [after rounding]: %f\n',phase_ideal-f*phase_res);

elseif(y<0)

 fprintf('phase error [after rounding]: %f\n',phase_ideal-(f*phase_res-360));

else

 fprintf('phase error [after rounding]: %f\n',phase_ideal-f*phase_res);

end

fprintf('****Magnitude output*****\n');

fprintf('amplitude: %.12f\n', mag_ideal);

fprintf('CORDIC magnitude output: %.12f (%s in binary)\n', X(iter+1), bin(X(iter+1)));

fprintf('ratio: %f\n', double(X(iter+1))/mag_ideal);

fprintf('CORDIC magnitude output after rounding: %d (%s in binary)\n', mag_f, mag_e);

fprintf('ratio (after rounding): %f\n',mag_f/mag_ideal);

figure (1)

cmap = colormap(lines(iter+3));

plot([0 I],[0 Q],'LineWidth', 2, 'Color',cmap(1,:))

grid on

legendInfo{1}=['Input Vector'];

 86

hold on

plot([0 X(1)],[0 Y(1)],'LineWidth', 2, 'Color',cmap(2,:))

legendInfo{2}=['After initial rotation'];

for i=2:iter

 plot([0 X(i)],[0 Y(i)],'LineWidth', 2, 'Color',cmap(i+1,:));

 legendInfo{i+1}=['After rotation ' num2str(i-1)];

 hold on

end

plot([0 X(i+1)],[0 Y(i+1)],'LineWidth', 2, 'Color',cmap(i+2,:))

legendInfo{i+2}=['After rotation ' num2str(i), ' (Last)'];

yPos=0;

plot(get(gca,'xlim'), [yPos yPos], '-.k', 'LineWidth', 2);

legend(legendInfo)

hold off

xlabel('I')

ylabel('Q')

title('Vectoring Mode CORDIC Iterations')

figure(2)

if(x<0 && y<0)

 plot(0:iter,Z(1:iter+1)*phase_res,'-dr','LineWidth', 2,'MarkerEdgeColor','k',...

 'MarkerFaceColor',[.49 1 .63],...

 'MarkerSize',10)

else

 plot(0:iter,Z(1:iter+1)*phase_res,'-dr','LineWidth', 2,'MarkerEdgeColor','k',...

 'MarkerFaceColor',[.49 1 .63],...

 'MarkerSize',10)

end

hold on

yPos_angle=phase_ideal;

plot(get(gca,'xlim'), [yPos_angle yPos_angle], '--.k', 'LineWidth', 2);

legend('Calculated angle', 'Actual angle')

%yPos_angle_1=phase_ideal-360;

%plot(get(gca,'xlim'), [yPos_angle_1 yPos_angle_1], '-.b', 'LineWidth', 2);

legend('Calculated angle', 'Actual angle')%, 'Actual angle-360 degree')

hold off

xlabel('Iteration')

ylabel('Angle (degrees)')

title('Cumulative Angle Through Iterations')

A =[X, Y, Z, Z*phase_res, abs(Z*phase_res-phase_ideal)]

B = [-d.*angleLUT',(-d.*angleLUT')*phase_res]

 87

C. FINDING THE MAXIMUM PHASE ERROR

%this matlab code is used to find the maximum phase error and amplitude

%error for a range of iteration, xin and yin value

clear all

clc

format long

phasebit = 5; % # of bits in phase output

unit = 360/2^phasebit; %angle per bit

%%%%%%%%%%%%%%% array for storing result

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cordic_phase_error = zeros(5,10); % store phase output of CORDIC

cordic_mag_error = zeros(2,10); % store mag output of CORDIC

max_phase_error_location = zeros(1,3); % store the I Q for maximum errors

a = 1;

for iter = 8:8 % number of iteration required for CORDIC

 max_phase_error = 0;

 min_mag_scalefactor = 0;

 for i= -255:255 % range of I value 1-256 for 8 integer bits

 for q=-255:255 % range of Q value 1-256 for 8 integer bits

 ideal_angle=atan2d(q, i); % ideal phase value

 J(i+256,q+256) = ideal_angle;

 mag_ideal=(sqrt(i^2 + q^2)); % ideal magnitude value

 [mag_cordic, phase_cordic] =cordic(i,q,iter); % call CORDIC function

 if(q<0 && phase_cordic==0)

 phase_error = ideal_angle - (phase_cordic*unit);

 elseif(q<0)

 phase_error = ideal_angle - (phase_cordic*unit-360);

 else

 phase_error = ideal_angle - (phase_cordic*unit);

 end

 K(i+256,q+256) = phase_cordic*unit;

 E(i+256,q+256) = phase_error;

 mag_error = mag_cordic/mag_ideal;

 % track the maximum error

 if (abs(phase_error)-max_phase_error> 0)

 max_phase_error = abs(phase_error);

 max_phase_error_location = [iter, i, q];

 end

 88

 % track the scale factor

 if (abs(mag_error)-min_mag_scalefactor < 0)

 min_mag_scalefactor = abs(mag_error);

 max_mag_error_location = [iter, i, q];

 end

 end

 end

 cordic_phase_error(1:5,a) =

[iter,max_phase_error,log2(max_phase_error),max_phase_error_location(2),max_phase_

error_location(3)];

 cordic_mag_error(1,a) = iter;

 cordic_mag_error(2,a) = mag_error;

 cordic_mag_error(3, a) =max_phase_error_location(2);

 cordic_mag_error(4, a) =max_phase_error_location(3);

 a=a+1

end

% figure(2)

% CordicS = surf(-255:255, -255:255, K)

% set(CordicS,'LineStyle','none')

% xlabel('I')

% ylabel('Q')

% title('Arctangent(Q/I)- 8-Iteration CORDIC using Floating Point Precision

Calculation')

figure(3)

plot(reshape(J,[],1), reshape(abs(E), [],1), '.r', 'Linewidth', 0.1,'MarkerSize',0.1)

hold on

yPos=max(reshape(abs(E), [],1));

plot(get(gca,'xlim'), [yPos yPos], '-.k', 'LineWidth', 2);

xlabel('angle (degree)')

ylabel('error (degree)')

title('Angle Error of the CORDIC Algorithm')

legend('Error', 'Max Error')

ylim([0, yPos+0.3]);

function [mag, z] = cordic(x, y, iter)

 %%%%%%%%%%%%%%%%%%% # of bits for Input

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 inputbit = 9; % word length, 1 sign bit the rest are integer bit

 %%%%%%%%%%%%%%%%%%%%%%% phase output

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 phasebit = 5; % # of bits in phase output

 Z_fl = 17; % # of fraction bit in phase

 89

 frac_length = 18;

 unit = 360/2^phasebit; %angle per bit

 %%%%%%%%%%%%%%%%%%% input X Y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 I = fi(x,1,inputbit,0); % I signal

 Q = fi(y,1,inputbit,0); % Q signal

 %%%%%%%%%%%%% Define X Y Array

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 %fra_length = 8; %default 8

 X = fi(zeros(iter+1,1),1,inputbit+2+frac_length,frac_length); % X array is a

9+frac_length+1(overflow) bit word with 1 sign bit, 9 integer bit and frac_length fraction

bit

 Y = fi(zeros(iter+1,1),1,inputbit+2+frac_length,frac_length); % Y array is a

9+frac_length+1(overflow) bit word with 1 sign bit, 9 integer bit and frac_length fraction

bit

 %%%%%%%%%%%%% Define Z angle Array

%%%%%%%%%%%%%%%%%%%%%%%%%%%

 %Z_fl = 1; %fraction length in phase output

 Z = fi(zeros(iter+1,1),1,phasebit+Z_fl+1,Z_fl); % Z array is a 5+Z_fl bit word with 1

sign bit, 4 integer bit and Z_fl fraction bit

 angleLUT = fi(atand(2.^-(0:20))/unit,1,phasebit+Z_fl,Z_fl); % create angle LUT

 %%%%%%%%%%%%%%%%%%%%% Pre - rotation before

iteration%%%%%%%%%%%%%%%%%%

 if (I>=0 && Q >=0) || (I>=0 && Q<0)

 X(1) = I;

 Y(1) = Q;

 Z(1)= 0;

 elseif I<0 && Q>=0

 X(1) = Q;

 Y(1) = -I;

 Z(1) = fi(90/unit,1,phasebit+Z_fl,Z_fl);

 elseif I<0 && Q<0

 X(1) = -Q;

 Y(1) = I;

 Z(1) = fi(-90/unit,1,phasebit+Z_fl,Z_fl);

 end

 %%%%%%%%%%%%%%%%%%%% start of iteration

%%%%%%%%%%%%%%%%%%%%%%%

 for i = 1:iter

 if Y(i) < 0

 X(i+1) = X(i) - bitsra(Y(i), i-1);

 Y(i+1) = Y(i) + bitsra(X(i), i-1);

 90

 Z(i+1) = Z(i) - angleLUT(i);

 else

 X(i+1) = X(i) + bitsra(Y(i), i-1);

 Y(i+1) = Y(i) - bitsra(X(i), i-1);

 Z(i+1) = Z(i) + angleLUT(i);

 if(X(i+1)==0 && Y(i+1)==0)

 Z(i+1)=0;

 else

 Z(i+1) = Z(i) + angleLUT(i);

 end

 end

 end

 %extract phase from the Z_array

 overflow =0;

 b = bin(Z(iter+1)); %output in binary (integer + fraction bit)

 c = b(length(b)-Z_fl+1); % 1st fraction bit (2^-1)

 e = b(2:length(b)-Z_fl); % phase output with only integer bit

 % if c is '1' round up e by 1

 if(bin2dec(c)==1)

 f = dec2bin(bin2dec(e)+ 1, length(e));

 if(bin2dec(f) == 32)

 f = dec2bin(0,length(c));

 end

 else

 f = dec2bin(bin2dec(e), length(e));

 end

 z = bin2dec(f);

 %extract magnitude from the X_array

 mag_a = bin(X(iter+1)); %output in binary (integer + fraction bit)

 mag_b = mag_a(length(mag_a)-frac_length+1); % 1st fraction bit (2^-1)

 mag_c = mag_a(1:length(mag_a)-frac_length); % mag output with only integer bit

 % if b is '1' round up c by 1

 if(bin2dec(mag_b)==1)

 mag_e = dec2bin(bin2dec(mag_c)+ 1, length(mag_c));

 else

 mag_e = dec2bin(bin2dec(mag_c), length(mag_c));

 end

 mag = bin2dec(mag_e);

end

 91

D. SEA CLUTTER SIMULATION

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MATLAB code for simulating sea clutter at different sea state,

% polarization and headwind direction

% Created by Owen Brooks and Modified by Dr. Sebastian Teich

% Adapted by Ang, Pak Siang to fit context of airborne operation

% Doppler resolution is determined by dp_pts

% Doppler and fluctuating power are saved as NuC1_rgdop and P_RC1_rgdop and

% exported to extract_para_shipv5.m

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%refresh

clear

close all

clc

set(0,'DefaultFigureWindowStyle','docked') %collects figures

%set(0,'DefaultFigureWindowStyle','normal') %collects figures

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

filename=datestr(now,'yymmdd-HHMM-')

%% Radar Inputs & Design Parameters

c=3e8; %speed of light in m/2

dR=0.3; %m

dp_pts = 128; %number of pulse integration

prf = 200; %prf in DIS was 200

f_c = 10e9; %carrier frequency 10GHz

lambda = c/f_c; %wavelength

dF = 1/(dp_pts/prf); %doppler resolution = 1/T where T = Np/PRF Np = 128, PRF =200

dV = dF*2/lambda;

G_t=db2pow(32); %assume 32dB

G_r=db2pow(32); %assume 32dB

L=db2pow(3); %total losses magnitude

P=500; % in Watts

B = 500e6; %bandwidth of chirp

fs_IF = 2*B;

ts=1/fs_IF; %sampling period

R_unamb = c*0.9995/2/prf; %unambiguous range = c(1-d)/(2xPRF)=150km

theta_el = 4.5 %+ 24.5; %elevation BW degrees

theta_az = 1.05; %azimuthal BW degrees

%Thermal Noise Level:

k=1.38e-23; %boltzman's (J/K)

 92

T=290; %rx temp (K)

F=1; %noise factor, 1 is ideal

pn=k*T*B*F;

% Parameter inputs

r_e=4/3*6371e3;

hoe = 8000; % + 32000; % ht of aircraft in ft

HOE=hoe*0.3048;%m

range = 3000;% + 8000; %slant range m

f_D=2*000/lambda; %doppler shift due to aircraft's motion assuming 0. how about

100m/s?

graz = asin((HOE/range)+(HOE^2/(2*r_e*range))-(range/(2*r_e)));

graz_deg = rad2deg(graz);

a_c_length = range * deg2rad(theta_el)*csc(graz);

dR_h = dR*sec(graz);

mainbeam_rb = a_c_length/dR_h;

Rb = round(range/dR);

range_h = range*cos(graz);

Rb_min =Rb - floor((range_h - HOE/tan(graz+deg2rad(theta_el/2)))/dR_h);

Rb_max =round(mainbeam_rb)+Rb_min;

%rb_cmin =Rb - floor((range_h - HOE/tan(graz+deg2rad(theta_el/2)))/dR_h);

%rb_cmax =round(mainbeam_rb)+Rb_min;

%16 - for 32 range bin target

rb_cmin = floor(Rb - 256);

rb_cmax = round(Rb + 256);

SS=5; % seastate

Pol=2; % polarization V = 1 H = 2

ThWind=60; % headwind direction in angle

u=3.16*SS^0.8; %wind velocity m/s

if Pol==1

 Pol='V';

 K=0.18;

elseif Pol==2

 Pol='H';

 K=0.25;

end

%clutter inputs for each range bin occupied by false target:

Psi_c=zeros(1,rb_cmax - rb_cmin);

A_c=zeros(1,rb_cmax - rb_cmin);

sigma_0_c=zeros(1,rb_cmax - rb_cmin);

 93

Psi_mainbeam=zeros(1,Rb_max - Rb_min);

A_mainbeam=zeros(1,Rb_max - Rb_min);

sigma_0_mainbeam=zeros(1,Rb_max - Rb_min);

%for the entire mainbeam

for i0=1:(Rb_max-Rb_min)

 %grazing angle, lower limit is zero

 Psi_mainbeam(i0)=asind(HOE/((i0+Rb_min)*dR)+HOE^2/(2*r_e*(i0+Rb_min)*dR)-

((i0+Rb_min)*dR)/(2*r_e)); %IEE

 if Psi_mainbeam(i0)<0

 Psi_mainbeam(i0)=0;

 end

 A_mainbeam(i0)=deg2rad(theta_az)*(dR*((i0+Rb_min)-

0.5))*dR*sec(deg2rad(Psi_mainbeam(i0))); %Nathanson

sigma_0_mainbeam(i0)=db2mag(NRL_SigmaSea(f_c/1e9,SS,Pol,Psi_mainbeam(i0),Th

Wind)); modelstring='NRL';

end

% for the 32 rangebins where the false target is expected to occupy

for i0=1:(rb_cmax-rb_cmin)

 %grazing angle, lower limit is zero

 Psi_c(i0)=asind(HOE/((i0+rb_cmin)*dR)+HOE^2/(2*r_e*(i0+rb_cmin)*dR)-

((i0+rb_cmin)*dR)/(2*r_e)); %IEE

 if Psi_c(i0)<0

 Psi_c(i0)=0;

 end

 A_c(i0)=deg2rad(theta_az)*(dR*((i0+rb_cmin)-0.5))*dR*sec(deg2rad(Psi_c(i0)));

%Nathanson

 % Sea Clutter RCS using NRL model

 sigma_0_c(i0)=db2mag(NRL_SigmaSea(f_c/1e9,SS,Pol,Psi_c(i0),ThWind));

modelstring='NRL';

end

%avg clutter power for entire mainbeam:

P_RC_0_mainbeam=zeros(1, Rb_max-Rb_min);

for i0=1:Rb_max-Rb_min %clutter in affected cells (within elevation beam)

 if SS==8; %Special case for NO clutter

 94

 break

 end

 %empirical envelope expected from clutter within mainbeam

P_RC_0_mainbeam(i0)=P*G_t*G_r*lambda^2*sigma_0_mainbeam(i0)*A_mainbeam(i

0)/...

 ((4*pi)^3*(((i0+Rb_min)*dR)^4)*L); %friis

end

%avg clutter power for 32 range bins at the center where the target is placed:

P_RC_0=zeros(1, rb_cmax-rb_cmin);

for i0=1:rb_cmax-rb_cmin %clutter in affected cells (within elevation beam)

 if SS==8; %Special case for NO clutter

 break

 end

 %empirical envelope expected from RCS_0

 P_RC_0(i0)=P*G_t*G_r*lambda^2*sigma_0_c(i0)*A_c(i0)/...

 ((4*pi)^3*(((i0+rb_cmin)*dR)^4)*L); %friis

end

Nbar=0.01; %spike probability - varies w/ texture

step1=(5-2)/90; %ratio of spike power

step2=(40-2)/89;

rho(1:91)=fliplr(2:step1:5);

rho(92:181)=(2:step2:40);

%clutter doppler constants

Beta=2/lambda*(0.25+K*u)/11; Alpha=2/lambda*(0.25+K*u)-Beta; %10*Beta

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%random clutter in main beam

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Texture_main=zeros(1,Rb_max-Rb_min);

spike_main=zeros(1,Rb_max-Rb_min);

n_spike_main=find(round((0.5/(1-Nbar))*rand(1,find(P_RC_0_mainbeam,1,'last'))));

spike_main(n_spike_main)=1;

mew_main=zeros(1,Rb_max-Rb_min);

sig1_main=abs(normrnd(0.2*u*cosd(ThWind)/lambda,20,1,Rb_max-Rb_min));

 95

%fluctuations in main beam

for i0=1:Rb_max-Rb_min %vary the texture (slow moving) by range bin

Texture_main(i0)=KdistributionTexture(Psi_mainbeam(i0),A_mainbeam(i0),Pol,ThWind

,P_RC_0_mainbeam(i0));

mew_main(i0)=(Alpha+Beta*Texture_main(i0)/P_RC_0_mainbeam(i0))*cosd(ThWind)

+f_D;

end

fdl_main=find(Texture_main,1);

fdr_main=find(Texture_main,1,'last');

sig3_1_main=ceil(3*max(sig1_main')/dF);

maxsig1_main=2*ceil(3*max(sig1_main')/dF)+1;

NuC1_main=zeros(Rb_max-Rb_min,max(maxsig1_main));

for i0=fdl_main:fdr_main

 NuC1_main(i0,1:maxsig1_main)=[(round(mew_main(i0)/dF)-

sig3_1_main(1))*dF:dF:(round(mew_main(i0)/dF)+sig3_1_main(1))*dF];

end

P_RCi1_main=zeros(1,Rb_max-Rb_min);

for i0=fdl_main:fdr_main

 if spike_main(i0)==1

P_RCi1_main(i0)=exprnd((1+spike_main(i0)*rho(1+abs(wrapTo180(ThWind))))*Textur

e_main(i0))*Nbar+...%n=1

 exprnd(Texture_main(i0))*(1-Nbar);%n=0

 else

 P_RCi1_main(i0)=exprnd(Texture_main(i0))*(1-Nbar);%n=0

 end

end

P_RC1_main=zeros(Rb_max-Rb_min,max(maxsig1_main));

for i0=fdl_main:fdr_main

 for id=1:maxsig1_main(1)

 P_RC1_main(i0,id)=P_RCi1_main(i0)*dF/sig1_main(i0)/sqrt(2*pi)*exp(-

0.5*((NuC1_main(i0,id)-mew_main(i0))/sig1_main(i0))^2);

 end

end

 96

% random value around normal distribution

P_RC1_main=normrnd(P_RC1_main,P_RC1_main/20);

figure(1001);

plot(((1:Rb_max-Rb_min)+Rb_min)*dR,pow2db(P_RCi1_main),'b+');hold on;

plot(((1:Rb_max-

Rb_min)+Rb_min)*dR,pow2db(P_RC_0_mainbeam),'Linewidth',3,'Color','r');

title(['Return power from the clutter within radar mainbeam for SS = ',num2str(SS),',

wind angle = ',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =',

num2str(graz_deg), ' deg']);

legend('KA Distributed','Mean Power')

xlabel('Range (m)')

ylabel('Power (dBW)')

figure(1002);

subplot(211)

plot(((1:Rb_max-Rb_min)+Rb_min)*dR,pow2db(P_RCi1_main),'b+');hold on;

%plot(((1:Rb_max-Rb_min)+Rb_min)*dR,pow2db(P_RC1_main(:,1)'),'b+');hold on;

plot(((1:Rb_max-

Rb_min)+Rb_min)*dR,pow2db(P_RC_0_mainbeam),'Linewidth',3,'Color','r');

xlabel('Range (m)')

ylabel('Power (dBW)')

title(['clutter profile for SS = ',num2str(SS),', wind angle = ',num2str(ThWind),'deg,

',modelstring,' model, ', 'Grazing angle =', num2str(graz_deg), ' deg']);

hold off

subplot(212)

plot(((1:Rb_max-Rb_min)+Rb_min)*dR,NuC1_main(:,1),'b+'),hold on

plot(((1:Rb_max-Rb_min)+Rb_min)*dR,mew_main(1,:),'Linewidth',3,'Color','r')

grid on, xlabel('Range [m]'),ylabel('Doppler [Hz]')

title(['clutter & target(s) doppler for SS = ',num2str(SS),', wind angle =

',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =', num2str(graz_deg), '

deg']);

hold off

RgDop_clutter_mainbeam = figure(1003); RgDop_clutter_mainbeam.Name='Range

Dopper - main beam'; Clutter.NumberTitle='off';%name figure in the window

figure(1003);

surf(NuC1_main, 1:Rb_max-Rb_min, (P_RC1_main), 'edgecolor', 'none');

xlabel('Doppler (Hz)'),ylabel('Range Bin'),zlabel('Power (W)')

title(['Range Doppler Distribution of Sea Clutter within the main beam for SS =

',num2str(SS),', wind angle = ',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing

angle =', num2str(graz_deg), ' deg']);

colorbar

%colormap(flipud(colormap))

 97

figure(1004);

mesh(NuC1_main, 1:Rb_max-Rb_min, P_RC1_main, gradient(NuC1_main));

xlabel('Doppler (Hz)'),ylabel('Range Bin'),zlabel('Power (W)')

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%random clutter in rangebin occupied by target:

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Texture=zeros(1,rb_cmax-rb_cmin);

spike=zeros(1,rb_cmax-rb_cmin);

n_spike=find(round((0.5/(1-Nbar))*rand(1,find(P_RC_0,1,'last'))));

spike(n_spike)=1;

mew=zeros(1,rb_cmax-rb_cmin);

sig1=abs(normrnd(0.2*u*cosd(ThWind)/lambda,20,1,rb_cmax-rb_cmin));

%fluctuations in rangebin occupied by target

for i0=1:rb_cmax-rb_cmin %vary the texture (slow moving) by range bin

 Texture(i0)=KdistributionTexture(Psi_c(i0),A_c(i0),Pol,ThWind,P_RC_0(i0));

 mew(i0)=(Alpha+Beta*Texture(i0)/P_RC_0(i0))*cosd(ThWind)+f_D;

end

fdl=find(Texture,1);

fdr=find(Texture,1,'last');

sig3_1=ceil(3*max(sig1')/dF);

maxsig1=2*ceil(3*max(sig1')/dF)+1;

NuC1=zeros(rb_cmax-rb_cmin,max(maxsig1));

for i0=fdl:fdr

 NuC1(i0,1:maxsig1)=[(round(mew(i0)/dF)-

sig3_1(1))*dF:dF:(round(mew(i0)/dF)+sig3_1(1))*dF];

end

P_RCi1=zeros(1,rb_cmax-rb_cmin);

for i0=fdl:fdr

 if spike(i0)==1

P_RCi1(i0)=exprnd((1+spike(i0)*rho(1+abs(wrapTo180(ThWind))))*Texture(i0))*Nbar

+...%n=1

 exprnd(Texture(i0))*(1-Nbar);%n=0

 else

 98

 P_RCi1(i0)=exprnd(Texture(i0))*(1-Nbar);%n=0

 end

end

P_RC1=zeros(rb_cmax-rb_cmin,max(maxsig1));

for i0=fdl:fdr

 for id=1:maxsig1(1)

 P_RC1(i0,id)=P_RCi1(i0)*dF/sig1(i0)/sqrt(2*pi)*exp(-0.5*((NuC1(i0,id)-

mew(i0))/sig1(i0))^2);

 end

end

% random value around normal distribution

P_RC1=normrnd(P_RC1,P_RC1/20);

%find the 512 center components of the doppler spectrum

% freq=zeros(1,512);

% for i0=1:(rb_cmax-rb_cmin)

% [row, col] = find(abs(NuC1(i0,:)- mew(i0))< dF/2); %locate the indice where the

mean frequency is at

% freq(i0) = (col);

% NuC1_rgdop_512(i0, :) = NuC1(i0, freq(i0)-(512/2)+1:freq(i0)+512/2);

% P_RC1_rgdop_512(i0,:) = P_RC1(i0, freq(i0)-(512/2)+1:freq(i0)+512/2);

% end

%find the 64 center components of the doppler spectrum

freq=zeros(1,64);

for i0=1:(rb_cmax-rb_cmin)

 [row, col] = find(abs(NuC1(i0,:)- mew(i0))< dF/2); %locate the indice where the mean

frequency is at

 freq(i0) = (col);

 NuC1_rgdop_64(i0, :) = NuC1(i0, freq(i0)-(64/2)+1:freq(i0)+64/2);

 P_RC1_rgdop_64(i0,:) = P_RC1(i0, freq(i0)-(64/2)+1:freq(i0)+64/2);

end

%find the 128 center components of the doppler spectrum

freq=zeros(1,128);

for i0=1:(rb_cmax-rb_cmin)

 [row, col] = find(abs(NuC1(i0,:)- mew(i0))< dF/2); %locate the indice where the mean

frequency is at

 freq(i0) = (col);

 NuC1_rgdop_128(i0, :) = NuC1(i0, freq(i0)-(128/2)+1:freq(i0)+128/2);

 P_RC1_rgdop_128(i0,:) = P_RC1(i0, freq(i0)-(128/2)+1:freq(i0)+128/2);

end

%find the 256 center components of the doppler spectrum

freq=zeros(1,256);

 99

for i0=1:(rb_cmax-rb_cmin)

 [row, col] = find(abs(NuC1(i0,:)- mew(i0))< dF/2); %locate the indice where the mean

frequency is at

 freq(i0) = (col);

 NuC1_rgdop_256(i0, :) = NuC1(i0, freq(i0)-(256/2)+1:freq(i0)+256/2);

 P_RC1_rgdop_256(i0,:) = P_RC1(i0, freq(i0)-(256/2)+1:freq(i0)+256/2);

end

%plot the clutter, noise power samples at the rangebin where the target

%reside

Clutter=figure(4);Clutter.Name='Clutter Samples at the Range Bins where the Target

Reside';Clutter.NumberTitle='off';%name figure in the window

set(gcf, 'PaperPosition', [0 0 12.3333 8.5833])

subplot(211)

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,pow2db(P_RC_0),'Linewidth',3,'Color','r');

hold on

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,pow2db(P_RCi1),'b+'), hold on

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,pow2db(pn)*ones(1,rb_cmax-rb_cmin),'k-

.','Linewidth',3);

grid on, xlabel('Range [m]'),ylabel('Power [dBW]')

%axis([0,100*dR,min(min(pow2db(P_RC))),max(max(pow2db(P_RC)))])

title(['clutter & noise profile for SS = ',num2str(SS),', wind angle =

',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =', num2str(graz_deg), '

deg']);

hold off

%plot 2D clutter sample spectrum at the range bin where the target reside

subplot(212)

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,NuC1(:,:),'b+'),hold on

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,mew(1,:),'Linewidth',3,'Color','r')

grid on, xlabel('Range [m]'),ylabel('Doppler [Hz]')

title(['clutter & target(s) doppler for SS = ',num2str(SS),', wind angle =

',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =', num2str(graz_deg), '

deg']);

print(Clutter,['ClutterScatter, SS=',num2str(SS),', Pol=',Pol,', Th=',num2str(ThWind),',

Mod=',modelstring],'-dpng','-r300');

hold off

RgDop_clutter = figure(1005); RgDop_clutter.Name='Range Doppler 32 Rangebin';

Clutter.NumberTitle='off';%name figure in the window

surf(NuC1, 1:rb_cmax-rb_cmin, P_RC1, 'edgecolor', 'none');

xlabel('Doppler (Hz)'),ylabel('Range Bin'),zlabel('Power (W)')

 100

title(['Range Doppler Distribution of Sea Clutter at Target for SS = ',num2str(SS),', wind

angle = ',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =',

num2str(graz_deg), ' deg']);

colorbar

%colormap(flipud(colormap))

E. NORMALIZED RCS

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Generate Graph for Normalised RCS/RCS/Received Power vs Range/SS

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%refresh

clear

close all

clc

set(0,'DefaultFigureWindowStyle','docked') %collects figures

%set(0,'DefaultFigureWindowStyle','normal') %collects figures

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

filename=datestr(now,'yymmdd-HHMM-')

%% Radar Inputs & Design Parameters

c=3e8; %speed of light in m/2

dR=0.3; %m

dp_pts = 128; %number of doppler

prf = 200; %prf in DIS was 200

f_c = 10e9; %carrier frequency 10GHz

lambda = c/f_c; %wavelength

dF = 1/(dp_pts/prf); %doppler resolution = 1/T where T = Np/PRF Np = 128, PRF =200

dV = dF*2/lambda;

G_t=db2pow(32); %assume 32dB

G_r=db2pow(32); %assume 32dB

L=db2pow(3); %total losses magnitude

P=500; % in Watts

B = 500e6; %bandwidth of chirp

fs_IF = 2*B;

ts=1/fs_IF; %sampling period

R_unamb = c*0.9995/2/prf; %unambiguous range = c(1-d)/(2xPRF)=150km

theta_el = 4.5 +24.5 ; %elevation BW degrees

theta_az = 1.05; %azimuthal BW degrees

%Thermal Noise Level:

 101

k=1.38e-23; %boltzman's (J/K)

T=290; %rx temp (K)

F=1; %noise factor, 1 is ideal

pn=k*T*B*F;

% Parameter inputs

r_e=4/3*6371e3;

hoe = 5000 + 32000; % ht of aircraft in ft

HOE=hoe*0.3048;%m

range = 5000 + 12000; %slant range m

f_D=2*000/lambda; %doppler shift due to aircraft's motion assuming 0. how about

100m/s?

graz = asin((HOE/range)+(HOE^2/(2*r_e*range))-(range/(2*r_e)));

graz_deg = rad2deg(graz);

a_c_length = range * deg2rad(theta_el)*csc(graz);

dR_h = dR*sec(graz);

mainbeam_rb = a_c_length/dR_h;

Rb = round(range/dR);

range_h = range*cos(graz);

Rb_min =Rb - floor((range_h - HOE/tan(graz+deg2rad(theta_el/2)))/dR_h);

Rb_max =round(mainbeam_rb)+Rb_min;

sigma_0_mainbeam=zeros(6,Rb_max - Rb_min);

P_RC_0_mainbeam=zeros(6, Rb_max-Rb_min);

for SS=2:7; %sea state

 Pol=2; % polarization V = 1 H = 2

 ThWind=30; % headwind direction in angle

 u=3.16*SS^0.8; %wind velocity m/s

 if Pol==1

 Pol='V';

 K=0.18;

 elseif Pol==2

 Pol='H';

 K=0.25;

 end

 %clutter inputs for each range bin occupied by false target:

 Psi_mainbeam=zeros(1,Rb_max - Rb_min);

 A_mainbeam=zeros(1,Rb_max - Rb_min);

 % for the entire mainbeam

 for i0=1:(Rb_max-Rb_min)

 %grazing angle, lower limit is zero

 102

Psi_mainbeam(i0)=asind(HOE/((i0+Rb_min)*dR)+HOE^2/(2*r_e*(i0+Rb_min)*dR)-

((i0+Rb_min)*dR)/(2*r_e)); %IEE

 if Psi_mainbeam(i0)<0

 Psi_mainbeam(i0)=0;

 end

 A_mainbeam(i0)=deg2rad(theta_az)*(dR*((i0+Rb_min)-

0.5))*dR*sec(deg2rad(Psi_mainbeam(i0))); %Nathanson

 main(i0)= deg2rad(theta_az)*(dR*((i0+Rb_min)-0.5));

 sigma_0_mainbeam(SS-

1,i0)=db2mag(NRL_SigmaSea(f_c/1e9,SS,Pol,Psi_mainbeam(i0),ThWind));

modelstring='NRL';

 end

 % avg clutter power for entire mainbeam:

 for i0=1:Rb_max-Rb_min %clutter in affected cells (within elevation beam)

 if SS==8; %Special case for NO clutter

 break

 end

 %empirical envelope expected from clutter within mainbeam

 P_RC_0_mainbeam(SS-1,i0)=P*G_t*G_r*lambda^2*sigma_0_mainbeam(SS-

1,i0)*A_mainbeam(i0)/...

 ((4*pi)^3*(((i0+Rb_min)*dR)^4)*L); %friis

 end

end

figure(1)

r = Rb_min*dR:dR:(Rb_max-1)*dR;

plot(r, pow2db(P_RC_0_mainbeam(1,:)))

ylabel('Received Power (dBW)')

xlabel('Range (m)')

grid on

figure(2)

plot(r, Psi_mainbeam(1,:))

ylabel('Grazing Angle(Degree)')

xlabel('Range (m)')

title(['Grazing Angle (Degree) vs Range']);

grid on

figure(3)

%plot(r, pow2db(A_mainbeam(1,:).*sigma_0_mainbeam(1,:)))

 103

hold on

plot(r, pow2db(sigma_0_mainbeam(1,:)))

%plot(r, pow2db(dR*sec(deg2rad(Psi_mainbeam(1, :)))))

yyaxis right

ylabel('RCS(dbsm)')

%ylabel('Ac(dbsm)')

yyaxis left

ylabel ('Normalised RCS dbSM')

legend('RCS', 'normalized RCS')

hold off

xlabel('Range (m)')

title(['Area of Illuminated Patch vs Range']);

grid on

hold off

figure(4)

plot(r, pow2db(sigma_0_mainbeam(1,:)))

ylabel('Normalized RCS (dBsm)')

xlabel('Range (m)')

title(['Normalised RCS vs Range']);

grid on

figure(5)

plot(r, pow2db(A_mainbeam(1,:).*sigma_0_mainbeam(1,:)))

ylabel('RCS (dbsm)')

xlabel('Range (m)')

title(['RCS vs Range']);

grid on

figure(6)

for i0=1:6

 plot(r, pow2db(sigma_0_mainbeam(i0,:)))

 hold on

end

ylabel('Normalized RCS (dbsm)')

xlabel('Range (m)')

grid on

legend('SS=2','SS=3','SS=4','SS=5','SS=6','SS=7');

figure(7)

for i0=1:6

 plot(r, pow2db(P_RC_0_mainbeam(i0,:)))

 hold on

end

 104

ylabel('Received Power (dBW)')

xlabel('Range (m)')

grid on

legend('SS=2','SS=3','SS=4','SS=5','SS=6','SS=7');

 105

APPENDIX B. VERILOG CODES

A. CORDIC PROCESSOR

`timescale 1 ns/100 ps

//**

// Verilog code for CORDIC in vectoring mode.

// Input a complex vector and output is amplitude and phase

// Output phase is quantized to 5 bits. 0 deg = 5'd0, 11.25 deg = 5'd1

// Size of Xout, Yout is 2 bit larger due to a system gain of 1.647 and overflow.

//

// Modified by Ang, Pak Siang Jun 9 2017 based on previous version from by Kirk

Weedman, KD7IRS, kirk@hdlexpress.com

//**

module CORDIC (clock, Xin, Yin, Iout, Zout);

 parameter XY_SZ = 9; // width of input and output data, 1 sign bit, rest are integer bit

 parameter phasebit = 5; // width of phase out data, 1 sign bit, rest are integer bit

 parameter iter = 18; // number of iteration in CORDIC

 parameter mag_fb = 18; // # of fraction bit introduced for X & Y array

 parameter phase_fb = 17; // # of fraction bit introduced for phase array

 input clock;

 input signed [XY_SZ-1:0] Xin; // # of bit for Xin is XY_SZ

 input signed [XY_SZ-1:0] Yin; // # of bit for Yin is XY_SZ

 output [XY_SZ:0] Iout; // # of bit for Iout is XY_SZ+1 which cater for

overflow

 output [phasebit-1:0] Zout; // # of bit for Zout is phasebit

 //--

 // arctan table

 //--

 // Note: The atan_table was chosen to be 12 bits wide giving resolution up to atan(2^-

11)

 wire signed [phasebit+phase_fb-1:0] atan_table [0:18];

 // upper 1 bit = sign bit

 // 12'b010000000000 = 90 degrees

 // 12'b110000000000 = -90 degrees

 // upper 2 bits = 2'b00 which represents 0 - PI/2 range

 106

 // upper 2 bits = 2'b01 which represents PI/2 to PI range

 // upper 2 bits = 2'b10 which represents PI to 3*PI/2 range (i.e. -PI/2 to -PI)

 // upper 2 bits = 2'b11 which represents 3*PI/2 to 2*PI range (i.e. 0 to -PI/2)

 // The upper 2 bits therefore tell us which quadrant we are in.

 assign atan_table[00] = 22'b0010000000000000000000; // 45.000 degrees -> atan(2^0)

 assign atan_table[01] = 22'b0001001011100100000001; // 26.565 degrees -> atan(2^-1)

 assign atan_table[02] = 22'b0000100111111011001110; // 14.036 degrees -> atan(2^-2)

 assign atan_table[03] = 22'b0000010100010001000100; // 7.12506 degrees -> atan(2^-

3)

 assign atan_table[04] = 22'b0000001010001011000011; // 3.576334 degrees ->

atan(2^-4)

 assign atan_table[05] = 22'b0000000101000101110110; // 1.789911 degrees ->

atan(2^-5)

 assign atan_table[06] = 22'b0000000010100010111110; // atan(2^-6)

 assign atan_table[07] = 22'b0000000001010001011111; // atan(2^-7)

 assign atan_table[08] = 22'b0000000000101000110000; // atan(2^-8)

 assign atan_table[09] = 22'b0000000000010100011000; // atan(2^-9)

 assign atan_table[10] = 22'b0000000000001010001100; // atan(2^-10)

 assign atan_table[11] = 22'b0000000000000101000110; // atan(2^-11)

 assign atan_table[12] = 22'b0000000000000010100011; // atan(2^-12)

 assign atan_table[13] = 22'b0000000000000001010001; // atan(2^-13)

 assign atan_table[14] = 22'b0000000000000000101001; // atan(2^-14)

 assign atan_table[15] = 22'b0000000000000000010100; // atan(2^-15)

 assign atan_table[16] = 22'b0000000000000000001010; // atan(2^-16)

 assign atan_table[17] = 22'b0000000000000000000101; // atan(2^-17)

 assign atan_table[18] = 22'b0000000000000000000011; // atan(2^-18)

 //--

 // registers

 //--

 //stage outputs

 reg signed [XY_SZ+1+mag_fb:0] X [0:iter+1];

 reg signed [XY_SZ+1+mag_fb:0] Y [0:iter];

 reg signed [phasebit+phase_fb:0] Z [0:iter+1]; //

 //--

 // stage 0

 //--

 wire [1:0] quadrant;

 assign quadrant [1]= Xin[XY_SZ-1]; // = 1 if 1 is negative

 assign quadrant [0]= Yin[XY_SZ-1];

 always @(posedge clock)

 107

 begin // make sure the rotation angle is in the -pi/2 to pi/2 range. If not then pre-rotate

 case (quadrant)

 2'b00,

 2'b01: // no pre-rotation needed for these quadrants

 begin //

 X[0] <= Xin <<< mag_fb;

 Y[0] <= Yin <<< mag_fb;

 Z[0] <= 0; //no need for any correction since vector is in the correct quadrant

 end

 2'b10: //y>0, d=1

 begin

 X[0] <= Yin <<< mag_fb;

 Y[0] <= -Xin <<< mag_fb;

 Z[0] <= 22'b0100000000000000000000; // add pi/2 from angle for this quadrant

 end

 2'b11:

 begin

 X[0] <= -Yin <<< mag_fb;

 Y[0] <= Xin <<< mag_fb;

 Z[0] <= 22'b1100000000000000000000; // subtract pi/2 to angle for this quadrant

 end

 endcase

 end

 //--

 // generate stages 1 to iter

 //--

 genvar i;

 generate

 for (i=0; i < iter; i=i+1)

 begin: XYZ

 wire Y_sign;

 wire signed [XY_SZ+mag_fb:0] X_shr, Y_shr;

 assign X_shr = X[i] >>> i; // signed shift right

 assign Y_shr = Y[i] >>> i;

 //the sign of the current rotation angle

 assign Y_sign = Y[i][XY_SZ+mag_fb+1]; // Y_sign = 1 if Y[i] < 0

 always @(posedge clock)

 108

 begin

 // add/subtract shifted data

 X[i+1] <= Y_sign ? X[i] - Y_shr : X[i] + Y_shr;

 Y[i+1] <= Y_sign ? Y[i] + X_shr : Y[i] - X_shr;

 Z[i+1] <= Y_sign ? Z[i] - atan_table[i] : Z[i] + atan_table[i];

 end

 end

 endgenerate

 //---

 // Rounding for Z array: if the 1st fraction bit is '1', round up Z[iter] by 1

 //---

 wire MS_FB;

 assign MS_FB = Z[iter][phase_fb-1]; // extract the most significant fraction bit

 always @(Z[iter])

 begin //

 case (MS_FB)

 1'b0 :

 begin

 Z[iter+1] <= Z[iter][phasebit+phase_fb-1:phase_fb];

 end

 1'b1:

 begin

 Z[iter+1] <= Z[iter][phasebit+phase_fb-1:phase_fb]+1;

 end

 endcase

 end

 //--

 // Rounding for X array: if the 1st fraction bit is '1', round up X[iter] by 1

 //--

 wire MS_FBx;

 assign MS_FBx = X[iter][mag_fb-1]; // extract the most signicant fraction bit

 always @(X[iter])

 begin //

 case (MS_FBx)

 1'b0 :

 begin

 X[iter+1] <= X[iter] >>> mag_fb;

 end

 1'b1:

 begin

 109

 X[iter+1] <= (X[iter] >>> mag_fb)+1;

 end

 endcase

 end

 //--

 // Check for Special Case : Xin = 0 Yin = 0 which will make PhaseOutput = 0

 //--

 always @(X[iter])

 begin

 if(X[iter] == 29'b00000000000000000000000000000)

 Z[iter+1] <= 5'b00000;

 end

 //--

 // output

 //--

 assign Iout = X[iter+1];

 assign Zout = Z[iter+1];

endmodule

B. TESTBENCH FILE

`timescale 1 ns/100 ps

module cordic_test;

localparam SZ = 9; // bits of accuracy

reg signed [SZ-1:0] Xin, Yin;

wire [4:0] Zout;

wire signed [SZ:0] Iout;

reg clk;

reg signed [9:0] countx = 0;

reg signed [9:0] county = 0;

//

reg signed [63:0] i;

reg start;

initial

 110

begin: run

 $write("Starting sim");

 Xin = -'d45; //14'b00000000000000;

 Yin = 'd23; //14'b00000000000000;

 #20;

 Xin = -'d45; //14'b00000000000000;

 Yin = -'d23; //14'b00000000000000;

 #20

 Xin = -'d230; //14'b00000000000000;

 Yin = 'd1; //14'b00000000000000;

 //#400;

 // Xin = -'d45;

 // Yin = 'd23;

/*

// test for quandrant 1

 for (countx = 0; countx < 256; countx = countx + 1)

 begin

 for (county = 0; county < 256; county = county + 1)

 begin

 #20;

 Xin = countx;

 Yin = county;

 end

 end

*/

/*

// test for quandrant 2

 for (countx = -255; countx < 1; countx = countx + 1)

 begin

 for (county = 0; county < 256; county = county + 1)

 begin

 #20;

 Xin = countx;

 Yin = county;

 end

 end

*/

/*

// test for quandrant 3

 111

 for (countx = -255; countx < 1; countx = countx + 1)

 begin

 for (county = -255; county < 1; county = county + 1)

 begin

 #20;

 Xin = countx;

 Yin = county;

 end

 end

*/

/*

// test for quandrant 4

 for (countx = 0; countx < 256; countx = countx + 1)

 begin

 for (county = -255; county < 1; county = county + 1)

 begin

 #20;

 Xin = countx;

 Yin = county;

 end

 end

*/

/*

// test 0 values should return 270 degrees

 for (county = -255; county < 0; county = county + 1)

 begin

 #20;

 Xin = 0;

 Yin = county;

 end

#100;

// should return 90 degrees

 for (county = 1; county < 256; county = county + 1)

 begin

 #20;

 Xin = 0;

 Yin = county;

 end

#100;

// test 0 values should return 180 degrees

 for (countx = -255; countx < 0; countx = countx + 1)

 begin

 #20;

 Xin = countx;

 112

 Yin = 0;

 end

#100;

// should return 00 degrees

 for (countx = 1; countx < 256; countx = countx + 1)

 begin

 #20;

 Xin = countx;

 Yin = 0;

 end

*/

 #400;

 $write("Simulation has finished");

 $stop;

end

initial //generate clock

begin

 clk = 1'b0;

 forever

 #10 clk = ~clk;

end

CORDIC sin_cos (clk, Xin, Yin, Iout, Zout);

endmodule

 113

LIST OF REFERENCES

[1] P. E. Pace, D. J. Fouts, S. Ekestorm, and C. Karow, “Digital false-target image

synthesizer for countering ISAR,” IEEE Proc. - Radar, Sonar Navig., 2002, vol.

149, no. 5, pp. 248–257.

[2] Electronic Warfare and Radar Systems Engineering Handbook, NAWCWD TP

8347, 4th ed., Naval Air Warfare Center Weapons Division, Point Mugu, CA,

2013. [Online]. Available: http://www.navair.navy.mil/nawcwd/ewssa/

downloads/NAWCWD%20TP%208347.pdf

[3] D. J. Fouts, P. E. Pace, C. Karow, and S. R. T. Ekestorm, “A single-chip false

target radar image generator for countering wideband imaging radars,” IEEE J.

Solid-State Circuits, vol. 37, no. 6, pp. 751–759, 2002.

[4] F. A. Le Dantec, “Performance analysis of a digital image synthesizer as a

counter-measure against inverse synthetic aperture radar,” M.S. thesis, Dept.

Electron. Comp. Eng., Naval Postgraduate School, Monterey, CA, 2002.

[5] D. J. Fouts, P. E. Pace, “False target radar image generator for countering

wideband imaging radars,” U.S. Patent 6 624 780, Sep. 23, 2003.

[6] P. E. Pace, “Signal synthesizer and method therefor,” U.S. Patent 2004/0201518,

Oct. 14, 2004.

[7] P. E. Pace, Detecting and Classifying Low Probability of Intercept Radar, 2nd ed.

Norwood, MA: Artech House, 2009, p. 239.

[8] M. S. Dwan, “Test and evaluation of digital image synthesis technology for

countering anti-ship capable missile threats,” M.S. thesis, Dept. Electron. Comp.

Eng., Naval Postgraduate School, Monterey, CA, 2007.

[9] Y. Lin, “Generation of clutter within a structured target synthesizer,” M.S. thesis,

Dept. Inform. Science., Naval Postgraduate School, Monterey, CA, 2012.

[10] L. Hongya and J. Xin, “Methods to recognize false target generated by digital-

image-synthesiser,” Int. Symp. Inform. Sci. Eng. 2008, vol. 1, pp. 71–75.

[11] G. Stimson, Introduction to Airborne Radar, 2nd ed. Mendham, NJ: SciTech

Pub., 1998.

[12] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers,”

Proc. 1998 ACMSIGDA Sixth Int. Symp. F. Program. Gate Arrays FPGA 98,

1998, pp. 191–200.

 114

[13] R. C. Altmeyer, “Design, implementation, and testing of a VLSI high complex

signal,” M.S. thesis, Dept. Electron. Comp. Eng., Naval Postgraduate School,

Monterey, CA, 2002.

[14] MathWorks. (n.d.). Calculate fixed-point arctangent. [Online]. Available:

https://www.mathworks.com/examples/matlab-fixed-point-

designer/mw/fixedpoint_product-fixpt_atan2_demo-calculate-fixed-point-

arctangent. Accessed Jul. 15, 2017.

[15] K. Weedman. (2013, Mar., 31). Verilog tutorials. [Online]. Available:

http://www.hdlexpress.com/Verilog/VT.html

[16] O. E. Brooks, “Submarine polyphase LPI radar design for surface search and

track,” M.S. thesis, Dept. Electron. Comp. Eng., Naval Postgraduate School,

Monterey, CA, 2015.

[17] V. Gregers-Hansen and R. Mital, “An improved empirical model for radar sea

clutter reflectivity,” Naval Research Laboratory, Washington, DC,

NRL/MR/5310–12-9346, Apr. 2012.

[18] B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB, 3rd ed. Boca

Raton, FL; London: CRC/Taylor & Francis, 2013.

[19] S. Watts, K. D. Ward, and R. J. A. Tough, “The physics and modeling of discrete

spikes in radar sea clutter,” IEEE Proc., 2005, pp. 72–77. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1435796

[20] K. D. Ward, S. Watts, and R. J. A. Tough, Sea Clutter: Scattering, the K-

Distribution and Radar Performance. London: Institution of Engineering and

Technology, 2006.

[21] K. D. Ward and R. J. A. Tough, “Radar detection performance in sea clutter with

discrete spikes,” IEEE Proc., 2002, pp. 253–257. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1174692

[22] S. Kemkemian, L. Lupinski, V. Corretja, R. Cottron, and S. Watts, “Performance

assessment of multi-channel radars using simulated sea clutter,” IEEE Proc.,

2015, pp. 1015–1020. Available: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=7131143

[23] S. Watts, “A new method for the simulation of coherent sea clutter,” IEEE Proc.,

2011, pp. 052–057. Available: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6324707

 115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

